The biosystematics of Syntretomorpha szaboi Papp (Hymenoptera: Braconidae: Euphorinae) attacking the Oriental honey bee, Apis cerana Fabricius. (Hymenoptera: Apidae), with a review of braconid parasitoids attacking bees

1990 ◽  
Vol 80 (1) ◽  
pp. 79-84 ◽  
Author(s):  
Annette K. Walker ◽  
N. K. Joshi ◽  
S. K. Verma

AbstractRecords of braconid parasitoids attacking bees (Apidae) are reviewed and their biology is discussed. The adult of Syntretomorpha szaboi Papp (Braconidae) is redescribed, the female for the first time. The final-instar larva is also described for the first time and the implications of interpreting larval characters are discussed. The Oriental honey bee, Apis cerana Fabricius, is recorded here for the first time as the host of S. szaboi.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Krzysztof Szpila ◽  
Kinga Walczak ◽  
Nikolas P. Johnston ◽  
Thomas Pape ◽  
James F. Wallman

AbstractThe first instar larva of a species of the Australian endemic genus Aenigmetopia Malloch is described for the first time, along with the first instar larvae of three other Australian species representing the genera Amobia Robineau-Desvoidy and Protomiltogramma Townsend. Larval morphology was analysed using a combination of light microscopy, confocal laser scanning microscopy and scanning electron microscopy. The following morphological structures are documented: pseudocephalon, antennal complex, maxillary palpus, facial mask, modifications of thoracic and abdominal segments, anal region, spiracular field, posterior spiracles and details of the cephaloskeleton. Substantial morphological differences are observed between the three genera, most notably in the labrum and mouthhooks of the cephaloskeleton, sensory organs of the pseudocephalon, spinulation, sculpture of the integument and form of the spiracular field. The first instar larval morphology of Aenigmetopia amissa Johnston, Wallman, Szpila & Pape corroborates the close phylogenetic affinity of Aenigmetopia Malloch with Metopia Meigen, inferred from recent molecular analysis. The larval morphology of Amobia auriceps (Baranov), Protomiltogramma cincta Townsend and Protomiltogramma plebeia Malloch is mostly congruent with the morphology of Palaearctic representatives of both genera.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Sharanabasappa S. Deshmukh ◽  
S. Kiran ◽  
Atanu Naskar ◽  
Palam Pradeep ◽  
C. M. Kalleshwaraswamy ◽  
...  

AbstractThe fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), has become a major threat in maize cultivation since its invasion to India in 2018. The humpbacked fly, Megaselia scalaris (Loew) (Diptera: Phoridae), was recorded as a laboratory parasitoid of FAW, for the first time in India. Initially, 30–40 maggots of M. (M) scalaris emerged out from the dead pre-pupa and pupa of laboratory-reared FAW. The fly laid up to 15 eggs on the outer surface of 6th instar larva or pre-pupa of the FAW. The incubation period was 1–2 days. The fly had 3 larval instars which lasted 3–4 days and a pupal period of 10–11 days. The adults survived for 6–7 days.


Zootaxa ◽  
2017 ◽  
Vol 4238 (4) ◽  
pp. 451 ◽  
Author(s):  
ALBERT DELER-HERNÁNDEZ ◽  
JUAN A. DELGADO

Preimaginal stages of the six species of Hydraenidae presently known from Cuba were obtained by rearing adults in the laboratory. Eggs of Hydraena perkinsi Spangler, 1980, H. decui Spangler, 1980 and H. franklyni Deler-Hernández & Delgado, 2012 are described and illustrated for the first time. The first instar larva of Gymnochthebius fossatus (LeConte, 1855) is redescribed, adding some new remarkable morphological characters including what could be the first abdominal egg-burster reported for this family. All larval instars of H. perkinsi, H. guadelupensis Orchymont, 1923 and Ochthebius attritus LeConte, 1878 are described and illustrated for the first time, with a special emphasis on their chaetotaxy. The second instar larva of G. fossatus along with first and third instar larvae of H. decui and H. franklyni are also studied for the first time. The pupal morphology and vestiture of a species belonging to the genus Hydraena are described for the first time, based on the pupa of H. perkinsi. Biological notes for several preimaginal stages of the studied species are also given. 


2017 ◽  
Vol 56 (3) ◽  
pp. 203-209 ◽  
Author(s):  
Xiangjie Zhu ◽  
Shujing Zhou ◽  
Xinjian Xu ◽  
Jianwen Wang ◽  
Yinglong Yu ◽  
...  

Insects ◽  
2018 ◽  
Vol 9 (3) ◽  
pp. 100 ◽  
Author(s):  
Ignacio Alba-Alejandre ◽  
Javier Alba-Tercedor ◽  
Fernando Vega

The coffee bean weevil, Araecerus fasciculatus (De Geer) (Coleoptera: Anthribidae), is a cosmopolitan insect with >100 hosts, and has been reported as a pest of stored coffee. During a study involving the coffee berry borer, we observed coffee bean weevils emerging from field-collected coffee berries and used micro-computerized tomography (micro-CT) scans to observe the insect inside the berry. Two eggs had eclosed inside the berry, resulting in observations of a newly eclosed adult beetle and a 5th instar larva, each feeding on one of the two seeds. This is the first time since 1775, when the insect was first described, that the insect has been observed inside a coffee berry.


2021 ◽  
Author(s):  
Maeva Techer ◽  
John Roberts ◽  
Reed Cartwright ◽  
Alexander Mikheyev

Abstract Host switching allows parasites to expand their niches. However, successful switching may require suites of adaptations and may decrease performance on the old host. As a result, reductions in gene flow accompany many host switches, driving speciation. Because host switches tend to be rapid, it is difficult to study them in real time and their demographic parameters remain poorly understood. As a result, fundamental factors that control subsequent parasite evolution, such as the size of the switching population or the extent of immigration from the original host, remain largely unknown. To shed light on the host switching process, we explored how host switches occur in independent host shifts by two ectoparasitic honey bee mites (Varroa destructor and V. jacobsoni). Both switched to the western honey bee (Apis mellifera) after it was brought into contact with their ancestral host (Apis cerana), ~70 and ~12 years ago, respectively. Varroa destructor subsequently caused worldwide collapses of honey bee populations. Using whole-genome sequencing on 63 mites collected in their native ranges from both the ancestral and novel hosts, we were able to reconstruct the known temporal dynamics of the switch. We further found multiple previously undiscovered mitochondrial lineages on the novel host, along with genetic equivalent of tens of individuals that were involved in the initial host switch. Despite being greatly reduced, some gene flow remains between mites adapted to different hosts. Our findings suggest that while reproductive isolation may facilitate fixation of traits beneficial for exploitation of the new host, ongoing genetic exchange may allow genetic amelioration of inbreeding effects.


2018 ◽  
Vol 151 ◽  
pp. 131-136 ◽  
Author(s):  
Pichaya Chanpanitkitchote ◽  
Yanping Chen ◽  
Jay D. Evans ◽  
Wenfeng Li ◽  
Jianghong Li ◽  
...  

2004 ◽  
Vol 43 (1) ◽  
pp. 17-20 ◽  
Author(s):  
C Imjongjirak ◽  
L Ngewsra ◽  
C Pramual ◽  
S Insuan ◽  
K Pala-Or ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document