Investigation of Empirical Mode Decomposition in Forecasting of Hydrological Time Series

2014 ◽  
Vol 28 (12) ◽  
pp. 4045-4057 ◽  
Author(s):  
Ozgur Kisi ◽  
Levent Latifoğlu ◽  
Fatma Latifoğlu
2021 ◽  
Author(s):  
Chun-Hsiang Tang ◽  
Christina W. Tsai

<p>Abstract</p><p>Most of the time series in nature are nonlinear and nonstationary affected by climate change particularly. It is inevitable that Taiwan has also experienced frequent drought events in recent years. However, drought events are natural disasters with no clear warnings and their influences are cumulative. The difficulty of detecting and analyzing the drought phenomenon remains. To deal with the above-mentioned problem, Multi-dimensional Ensemble Empirical Mode Decomposition (MEEMD) is introduced to analyze the temperature and rainfall data from 1975~2018 in this study, which is a powerful method developed for the time-frequency analysis of nonlinear, nonstationary time series. This method can not only analyze the spatial locality and temporal locality of signals but also decompose the multiple-dimensional time series into several Intrinsic Mode Functions (IMFs). By the set of IMFs, the meaningful instantaneous frequency and the trend of the signals can be observed. Considering stochastic and deterministic influences, to enhance the accuracy this study also reconstruct IMFs into two components, stochastic and deterministic, by the coefficient of auto-correlation.</p><p>In this study, the influences of temperature and precipitation on the drought events will be discussed. Furthermore, to decrease the significant impact of drought events, this study also attempts to forecast the occurrences of drought events in the short-term via the Artificial Neural Network technique. And, based on the CMIP5 model, this study also investigates the trend and variability of drought events and warming in different climatic scenarios.</p><p> </p><p>Keywords: Multi-dimensional Ensemble Empirical Mode Decomposition (MEEMD), Intrinsic Mode Function(IMF), Drought</p>


2019 ◽  
Vol 11 (3) ◽  
pp. 865-876 ◽  
Author(s):  
Xianqi Zhang ◽  
Wei Tuo ◽  
Chao Song

Abstract The prediction of annual runoff in the Lower Yellow River can provide an important theoretical basis for effective reservoir management, flood control and disaster reduction, river and beach management, rational utilization of regional water and sediment resources. To solve this problem and improve the prediction accuracy, permutation entropy (PE) was used to extract the pseudo-components of modified ensemble empirical mode decomposition (MEEMD) to decompose time series to reduce the non-stationarity of time series. However, the pseudo-component was disordered and difficult to predict, therefore, the pseudo-component was decomposed by ensemble empirical mode decomposition (EEMD). Then, intrinsic mode functions (IMFs) and trend were predicted by autoregressive integrated moving average (ARIMA) which has strong ability of approximation to stationary series. A new coupling model based on MEEMD-ARIMA was constructed and applied to runoff prediction in the Lower Yellow River. The results showed that the model had higher accuracy and was superior to the CEEMD-ARIMA model or EEMD-ARIMA model. Therefore, it can provide a new idea and method for annual runoff prediction.


2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Md. Rabiul Islam ◽  
Md. Rashed-Al-Mahfuz ◽  
Shamim Ahmad ◽  
Md. Khademul Islam Molla

This paper presents a subband approach to financial time series prediction. Multivariate empirical mode decomposition (MEMD) is employed here for multiband representation of multichannel financial time series together. Autoregressive moving average (ARMA) model is used in prediction of individual subband of any time series data. Then all the predicted subband signals are summed up to obtain the overall prediction. The ARMA model works better for stationary signal. With multiband representation, each subband becomes a band-limited (narrow band) signal and hence better prediction is achieved. The performance of the proposed MEMD-ARMA model is compared with classical EMD, discrete wavelet transform (DWT), and with full band ARMA model in terms of signal-to-noise ratio (SNR) and mean square error (MSE) between the original and predicted time series. The simulation results show that the MEMD-ARMA-based method performs better than the other methods.


2020 ◽  
Vol 30 (08) ◽  
pp. 2050039 ◽  
Author(s):  
Foued Saâdaoui ◽  
Othman Ben Messaoud

Forecasting has always been the cornerstone of machine learning and statistics. Despite the great evolution of the time series theory, forecasters are still in the hunt for better models to make more accurate decisions. The huge advances in neural networks over the last years has led to the emergence of a new generation of effective models replacing classic econometric models. It is in this direction that we propose, in this paper, a new multiscaled Feedforward Neural Network (FNN), with the aim of forecasting multivariate time series. This new model, called Empirical Mode Decomposition (EMD)-based Neural ARDL, is inspired from the well-known Autoregressive Distributed Lag (ARDL) model being our proposal founded upon the concepts of nonlinearity, EMD-multiresolution and neural networks. These features give the model the ability to effectively capture many nonlinear patterns like the ones often present in econophysical time series, such as nonlinear trends, seasonal effects, long-range dependency, etc. The proposed algorithm can be summarized into the following four basic tasks: (i) EMD breaking-down multivariate time series into different resolution levels, (ii) feeding EMD components from the same levels into a number of feedforward neural ARDL models, (iii) from one level to the next, extrapolating the component corresponding to the response variable (scalar output) a number of steps ahead, and finally, (iv) recombining level-by-level forecasts into a single output. An optimal learning scheme is rigorously designed for efficiently training the new proposed architecture. The approach is finally tested and compared to a number of powerful benchmark models, where experiments are conducted on real-world data.


Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1882 ◽  
Author(s):  
Taiyong Li ◽  
Zhenda Hu ◽  
Yanchi Jia ◽  
Jiang Wu ◽  
Yingrui Zhou

Crude oil is one of the most important types of energy and its prices have a great impact on the global economy. Therefore, forecasting crude oil prices accurately is an essential task for investors, governments, enterprises and even researchers. However, due to the extreme nonlinearity and nonstationarity of crude oil prices, it is a challenging task for the traditional methodologies of time series forecasting to handle it. To address this issue, in this paper, we propose a novel approach that incorporates ensemble empirical mode decomposition (EEMD), sparse Bayesian learning (SBL), and addition, namely EEMD-SBL-ADD, for forecasting crude oil prices, following the “decomposition and ensemble” framework that is widely used in time series analysis. Specifically, EEMD is first used to decompose the raw crude oil price data into components, including several intrinsic mode functions (IMFs) and one residue. Then, we apply SBL to build an individual forecasting model for each component. Finally, the individual forecasting results are aggregated as the final forecasting price by simple addition. To validate the performance of the proposed EEMD-SBL-ADD, we use the publicly-available West Texas Intermediate (WTI) and Brent crude oil spot prices as experimental data. The experimental results demonstrate that the EEMD-SBL-ADD outperforms some state-of-the-art forecasting methodologies in terms of several evaluation criteria such as the mean absolute percent error (MAPE), the root mean squared error (RMSE), the directional statistic (Dstat), the Diebold–Mariano (DM) test, the model confidence set (MCS) test and running time, indicating that the proposed EEMD-SBL-ADD is promising for forecasting crude oil prices.


Sign in / Sign up

Export Citation Format

Share Document