Improving Urban Drainage Systems Resiliency Against Unexpected Blockages: A Probabilistic Approach

2018 ◽  
Vol 32 (14) ◽  
pp. 4561-4573 ◽  
Author(s):  
J. Yazdi
2022 ◽  
Author(s):  
Anita Raimondi ◽  
Maria Gloria Di Chiano ◽  
Mariana Marchioni ◽  
Umberto Sanfilippo ◽  
Gianfranco Becciu

Abstract Sustainable Urban Drainage Systems (SuDS) gatherer effective strategies and control systems for stormwater management especially in highly urbanized areas characterized by large impervious surfaces that increase runoff peak flow and volume. The main goal is to restore the natural water balance by increasing infiltration, evapotranspiration and promoting rainwater reuse. This paper proposes an analytical probabilistic approach for the modelling SuDS applicable to different structures and goals. Developed equations allow to estimate the probability of overflow and the probability of pre-filling at the end of dry periods, to evaluate the efficiency of the storage in rainwater management and its ability to empty between consecutive events. A great advantage of the proposed method is that it allows to consider a chain of rainfall events; this aspect is particularly important for control systems SuDS characterized by low outflow rates which storage capacity is often not completely available at the end of a dry period because pre-filled by previous events. Suggested formulas were tested to two cases studies in Milan and Genoa, Italy.


2005 ◽  
Vol 52 (5) ◽  
pp. 257-264 ◽  
Author(s):  
T.G. Schmitt ◽  
M. Thomas ◽  
N. Ettrich

The European research project in the EUREKA framework, RisUrSim is presented with its overall objective to develop an integrated planning tool to allow cost effective management for urban drainage systems. The project consortium consisted of industrial mathematics and water engineering research institutes, municipal drainage works as well as an insurance company. The paper relates to the regulatory background of European Standard EN 752 and the need of a more detailed methodology to simulate urban flooding. The analysis of urban flooding caused by surcharged sewers in urban drainage systems leads to the necessity of a dual drainage modeling. A detailed dual drainage simulation model is described based upon hydraulic flow routing procedures for surface flow and pipe flow. Special consideration is given to the interaction between surface and sewer flow during surcharge conditions in order to most accurately compute water levels above ground as a basis for further assessments of possible damage costs. The model application is presented for a small case study in terms of data needs, model verification and first simulation results.


2018 ◽  
Vol 15 (8) ◽  
pp. 750-759 ◽  
Author(s):  
Fatemeh Jafari ◽  
S. Jamshid Mousavi ◽  
Jafar Yazdi ◽  
Joong Hoon Kim

2015 ◽  
pp. 101-107 ◽  
Author(s):  
Vianney Courdent ◽  
Luca Vezzaro ◽  
Peter Steen Mikkelsen ◽  
Ane Loft Mollerup ◽  
Morten Grum

Sign in / Sign up

Export Citation Format

Share Document