Antimony Accumulation, Growth Performance, Antioxidant Defense System and Photosynthesis of Zea mays in Response to Antimony Pollution in Soil

2010 ◽  
Vol 215 (1-4) ◽  
pp. 517-523 ◽  
Author(s):  
Xiangliang Pan ◽  
Daoyong Zhang ◽  
Xi Chen ◽  
Anming Bao ◽  
Lanhai Li
2021 ◽  
Author(s):  
Muhammad Kaleem ◽  
Iqbal Hussain ◽  
Mansoor Hameed ◽  
Muhammad Sajid Aqeel Ahmad ◽  
Anam Mehmood ◽  
...  

Abstract Calcium (Ca) is a macronutrient and work as a modulator to mitigate oxidative stress induced by heavy metals. Present work was conducted to elucidate the role of Ca in modulating growth, physio-biochemical traits, and cellular antioxidant defense system in Zea mays L. seedlings under Cd stress. The experiment was designed in a complete randomized design with two levels of Cd (0 and 150 µM) and six levels of Ca (0, 0.5, 1, 2.5, 5 and 10 mM). Maize seedlings exposed to Cd at150 µM concentration showed a notable decrease in growth, biomass, anthocyanins, chlorophylls, and antioxidant enzymes activities. Higher level of Cd (150 µm) also caused an upsurge in oxidative damage observed as higher electrolyte leakage (increased membrane permeability), H2O2 production and MDA accumulation. Supplementation of Ca notably improved growth traits, photosynthetic pigments, cellular antioxidants (APX, POD and ascorbic acid), anthocyanins and level of osmolytes. The significant improvement in the osmolytes (proteins and amino acids), and enzymatic antioxidative defense system enhanced the membrane stability and mitigated the damaging effects of Cd. The present results concluded that exogenously applied Ca can potentially improve growth by regulating antioxidants and enable maize plants to withstand the Cd toxicity.


Sign in / Sign up

Export Citation Format

Share Document