oxidized fish oil
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 29)

H-INDEX

18
(FIVE YEARS 5)

2022 ◽  
Vol 22 ◽  
pp. 101000
Author(s):  
Shuisheng Long ◽  
Xiaohui Dong ◽  
Hao Liu ◽  
Xiaobo Yan ◽  
Beiping Tan ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Shuisheng Long ◽  
Zhihao Li ◽  
Xiaohui Dong ◽  
Xiaobo Yan ◽  
Hao Liu ◽  
...  

The spleen is an important organ in the immune function of fish, and it is also important for hematogenesis and antibody and granulocyte production. However, the effect of oxidized fish oil on the spleen of hybrid grouper (♀ Epinephelus fuscoguttatus × ♂ Epinephelus lanceolatus) is unknown. In this study, hybrid groupers were fed with oxidized fish oil and the spleen index, antioxidant ability, histology and transcriptome were investigated. Oxidized fish oil did not affect the spleen index. Levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) in the spleen were significantly increased as the amount of oxidized fish oil in the diet increased, but the vitamin E concentration was significantly decreased. The morphological organization of the spleen was damaged with increased oxidative stress. And the spleen reacted to oxidative stress by platelet activation, FOXO and notch signaling pathways, which involved amyloid beta precursor protein binding family B member 1 interacting protein (APBB1IP) gene, glucose-6-phosphatase (G6PC) gene, histone acetyltransferase p300 (EP300) gene, insulin gene and notch 2 gene. In conclusion, the oxidized fish oil caused oxidative stress and damaged its structure. Additionally, oxidized fish oil changed the transcription profile of the spleen.


2021 ◽  
Vol 8 ◽  
Author(s):  
Samad Rahimnejad ◽  
Konrad Dabrowski ◽  
Marisol Izquierdo ◽  
Nima Hematyar ◽  
Aiman Imentai ◽  
...  

This 10-week feeding experiment examined the effects of supplementing vitamin C (VC) and E (VE) in oxidized oil diets on growth, fatty acid composition, blood physiological indicators, innate immunity, antioxidant capacity, and liver and intestine histology of rainbow trout (Oncorhynchus mykiss). Four diets were produced including a fresh fish oil containing diet (FFO diet), an oxidized fish oil containing diet (OFO diet), and OFO diet supplemented with 500 mg kg–1 VC and 400 mg kg–1 VE (OFO+C500+E400 diet) or 1,000 mg kg–1 VC and 800 mg kg–1 VE (OFO+C1000+E800 diet). Four hundred and twenty fish averaging 46.9 ± 0.32 g were stocked into 12 tanks and fed the diets twice a day to visual satiety. The results showed no significant effect of OFO or vitamins supplementation on growth, feed intake and feed utilization (P > 0.05). The groups that received OFO and OFO+C1000+E800 diets had significantly (P < 0.05) lower hepatosomatic indices than the other groups. Muscle fatty acid composition showed decreased proportion of 15:0, 16:0, 16:1n-7, 16:2n-4, 18:1n-5, 18:2n-6 (linoleic acid) and total saturated fatty acids in OFO group. Whereas higher percentages of 20:3n-6 and 20:3n-3 were found in OFO group. In addition, the highest ratio of docosahexaenoic acid (DHA, 22:6n-3) to eicosapentaenoic acid (EPA, 20:5n-3) was detected in OFO+C500+E400 group. The highest serum triglyceride concentration was recorded in the OFO group. Serum aspartate aminotransferase activity increased in OFO and OFO+C1000+E800 groups compared to OFO+C500+E400 group. Furthermore, significantly higher alkaline phosphatase activity in blood was found in OFO and OFO+C500+E400 groups. Significantly lower serum lysozyme, antiprotease, superoxide dismutase, and catalase activities were recorded in OFO group compared to FFO and OFO+C500+E400 groups, and an opposite trend was observed for malondialdehyde concentration. Muscle VC and VE concentrations, and liver and intestine histology remained unaffected. To conclude, feeding diet containing oxidized oil with peroxide value of 182 meq kg–1 with/without VC and VE supplementation did not influence growth and tissue VC and VE concentrations of rainbow trout. However, supplementing 500 mg kg–1 VC and 400 mg kg–1 VE reversed the adverse effects of OFO on non-specific immune response and antioxidant capacity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jian-min Zhou ◽  
Hai-jun Zhang ◽  
Shu-geng Wu ◽  
Kai Qiu ◽  
Yu Fu ◽  
...  

Our previous study indicated that dietary xylooligosaccharide (XOS) supplementation improved feed efficiency, ileal morphology, and nutrient digestibility in laying hens. The objective of this study was to evaluate the mitigative effects of XOS on intestinal mucosal barrier impairment and microbiota dysbiosis induced by oxidized fish oil (OFO) in laying hens. A total of 384 Hy-Line Brown layers at 50 weeks of age were randomly divided into four dietary treatments, including the diets supplemented with 20 g/kg of fresh fish oil (FFO group) or 20 g/kg of oxidized fish oil (OFO group), and the OFO diets with XOS addition at 200 mg/kg (OFO/XOS200 group) or 400 mg/kg (OFO/XOS400 group). Each treatment had eight replicates with 12 birds each. The OFO treatment decreased (P < 0.05) the production performance of birds from 7 to 12 weeks of the experiment, reduced (P < 0.05) ileal mucosal secretory immunoglobulin A (sIgA) content, and increased (P < 0.05) serum endotoxin concentration, as well as downregulated (P < 0.05) mRNA expression of claudin-1 (CLDN1) and claudin-5 (CLDN5) in the ileal mucosa at the end of the experiment. Dietary XOS addition (400 mg/kg) recovered (P < 0.05) these changes and further improved (P < 0.05) ileal villus height (VH) and the villus height-to-crypt depth ratio (VCR). In addition, OFO treatment altered cecal microbial composition of layers, and these alterations were probably involved in OFO-induced ileal mucosal impairment as causes or consequences. Supplemental XOS remodeled cecal microbiota of layers fed the OFO diet, characterized by an elevation in microbial richness and changes in microbial composition, including increases in Firmicutes, Ruminococcaceae, Verrucomicrobia (Akkermansia), Paraprevotella, Prevotella_9, and Oscillospira, along with a decrease in Erysipelatoclostridium. The increased abundance of Verrucomicrobia (Akkermansia) had positive correlations with the improved ileal VH and ileal mucosal expression of CLDN1. The abundance of Erysipelatoclostridium decreased by XOS addition was negatively associated with ileal VH, VCR, ileal mucosal sIgA content, and the relative expression of zonula occludens-2, CLDN1, and CLDN5. Collectively, supplemental XOS alleviated OFO-induced intestinal mucosal barrier dysfunction and performance impairment in laying hens, which could be at least partially attributed to the modulation of gut microbiota.


Author(s):  
Qiuping Guo ◽  
Lingyu Zhang ◽  
Yehui Duan ◽  
Wenlong Wang ◽  
Ruilin Huang ◽  
...  

The study was aimed to investigate the changes in carcass traits, meat quality, muscle fiber characteristics and liver function in pigs fed with high levels of fresh fish oil and oxidized fish oil. Thirty piglets were randomly assigned to receive basal diet plus 2% fish oil (LFO), basal diet plus 8% fish oil (HFO) or basal diet plus 8% oxidized fish oil (OFO) for 120 days. Pigs of the HFO and OFO group showed reduced carcass weight, dressing percentage, loin eye area and increased yellowness of the longissimus dorsi muscle compared with LFO group (P < 0.05). Dietary HFO and OFO suppressed the relative expression levels of myosin heavy chain (MyHC) isoform (Ⅰ and Ⅱa), glutathione peroxidase 4, and NAD(P)H: quinone oxidoreductase-1 and mitochondrial biogenesis in longissimus dorsi muscle (P < 0.05). Dietary HFO or OFO increased the serum aspartates aminotransferase, alanine aminotransferase, total bilirubin, direct bilirubin, oxidized low-density lipoprotein, liver index and concentration of malondialdehyde (MDA) in liver (P < 0.05). In conclusion, high levels of fresh fish oil and oxidized fish oil have adverse effects on carcass traits, muscle fiber characteristics and liver function, which may be partly due to the mitochondrial dysfunction and impaired antioxidative capacity.


Sign in / Sign up

Export Citation Format

Share Document