Structural and functional modifications in Fimbristylis Vahl for ecological fitness in hyper-saline wetlands

Author(s):  
Muhammad Kaleem ◽  
Mansoor Hameed
2006 ◽  
Vol 5 (7) ◽  
pp. 1065-1080 ◽  
Author(s):  
Ping Ren ◽  
Deborah J. Springer ◽  
Melissa J. Behr ◽  
William A. Samsonoff ◽  
Sudha Chaturvedi ◽  
...  

ABSTRACT Cryptococcus gattii is a primary pathogenic yeast, increasingly important in public health, but factors responsible for its host predilection and geographical distribution remain largely unknown. We have characterized C. gattii STE12α to probe its role in biology and pathogenesis because this transcription factor has been linked to virulence in many human and plant pathogenic fungi. A full-length STE12α gene was cloned by colony hybridization and sequenced using primer walk and 3′ rapid amplification of cDNA ends strategies, and a ste12αΔ gene knockout mutant was created by URA5 insertion at the homologous site. A semiquantitative analysis revealed delayed and poor mating in ste12αΔ mutant; this defect was not reversed by exogenous cyclic AMP. C. gattii parent and mutant strains showed robust haploid fruiting. Among putative virulence factors tested, the laccase transcript and enzymatic activity were down regulated in the ste12αΔ mutant, with diminished production of melanin. However, capsule, superoxide dismutase, phospholipase, and urease were unaffected. Similarly, Ste12 deficiency did not cause any auxotrophy, assimilation defects, or sensitivity to a large panel of chemicals and antifungals. The ste12αΔ mutant was markedly attenuated in virulence in both BALB/c and A/Jcr mice models of meningoencephalitis, and it also exhibited significant in vivo growth reduction and was highly susceptible to in vitro killing by human neutrophils (polymorphonuclear leukocytes). In tests designed to simulate the C. gattii natural habitat, the ste12αΔ mutant was poorly pigmented on wood agar prepared from two tree species and showed poor survival and multiplication in wood blocks. Thus, STE12α plays distinct roles in C. gattii morphogenesis, virulence, and ecological fitness.


2000 ◽  
Vol 74 (16) ◽  
pp. 7562-7567 ◽  
Author(s):  
Baoshan Chen ◽  
Lynn M. Geletka ◽  
Donald L. Nuss

ABSTRACT Infectious cDNA clones of mild (CHV1-Euro7) and severe (CHV1-EP713) hypovirus strains responsible for virulence attenuation (hypovirulence) of the chestnut blight fungus Cryphonectria parasitica were used to construct viable chimeric viruses. Differences in virus-mediated alterations of fungal colony morphology, growth rate, and canker morphology were mapped to a region of open reading frame B extending from nucleotides 2,363 to 9,904. By swapping domains within this region, it was possible to generate chimeric hypovirus-infectedC. parasitica isolates that exhibited a spectrum of defined colony and canker morphologies. Several severe strain traits were observed to be dominant. It was also possible to uncouple the severe strain traits of small canker size and suppression of asexual sporulation. For example, fungal isolates infected with a chimera containing nucleotides 2363 through 5310 from CHV1-Euro7 in a CHV1-713 background formed small cankers that were similar in size to that caused by CHV1-EP713-infected isolates but with the capacity for producing asexual spores at levels approaching that observed for fungal isolates infected with the mild strain. These results demonstrate that hypoviruses can be engineered to fine-tune the interaction between a pathogenic fungus and its plant host. The identification of specific hypovirus domains that differentially contribute to canker morphology and sporulation levels also provides considerable utility for continuing efforts to enhance biological control potential by balancing hypovirulence and ecological fitness.


2021 ◽  
Vol 9 ◽  
Author(s):  
María Isabel Chacón-Sánchez ◽  
Jaime Martínez-Castillo ◽  
Jorge Duitama ◽  
Daniel G. Debouck

The genus Phaseolus, native to the Americas, is composed of more than eighty wild species, five of which were domesticated in pre-Columbian times. Since the beginning of domestication events in this genus, ample opportunities for gene flow with wild relatives have existed. The present work reviews the extent of gene flow in the genus Phaseolus in primary and secondary areas of domestication with the aim of illustrating how this evolutionary force may have conditioned ecological fitness and the widespread adoption of cultigens. We focus on the biological bases of gene flow in the genus Phaseolus from a spatial and time perspective, the dynamics of wild-weedy-crop complexes in the common bean and the Lima bean, the two most important domesticated species of the genus, and the usefulness of genomic tools to detect inter and intraspecific introgression events. In this review we discuss the reproductive strategies of several Phaseolus species, the factors that may favor outcrossing rates and evidence suggesting that interspecific gene flow may increase ecological fitness of wild populations. We also show that wild-weedy-crop complexes generate genetic diversity over which farmers are able to select and expand their cultigens outside primary areas of domestication. Ultimately, we argue that more studies are needed on the reproductive biology of the genus Phaseolus since for most species breeding systems are largely unknown. We also argue that there is an urgent need to preserve wild-weedy-crop complexes and characterize the genetic diversity generated by them, in particular the genome-wide effects of introgressions and their value for breeding programs. Recent technological advances in genomics, coupled with agronomic characterizations, may make a large contribution.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Xuefei Chang ◽  
Linlin Sun ◽  
Duo Ning ◽  
Cong Dang ◽  
Hongwei Yao ◽  
...  

Abstract The potential risks of Bt rice on non-target arthropods (NTAs) should be evaluated and defined before commercial production. Recently, effects of Bt rice on NTAs under abiotic and biotic stress conditions attracted much attention. Here we reported the effects of Bt rice T1C-19 (Cry1C rice) on the non-target herbivore, Nilaparvata lugens (rice brown planthopper, BPH) with or without RDV (rice dwarf virus) infection conditions. BPH showed no feeding and oviposition preference between Bt rice T1C-19 and its non-Bt parental rice Minghui 63 (MH63), as well as between RDV-infected and RDV-free rice plants. Meanwhile, rice type, RDV infection status, and their interaction had little impacts on the survival, development and fecundity of BPH. By comparison with non-Bt control, Bt rice T1C-19 with or without RDV infection had no significant effects on the life-table parameters of BPH including rm, R0, T, DT and λ. Thus, it could be concluded that Bt rice T1C-19 doesn’t affect the ecological fitness of BPH either under RDV stress or not.


2013 ◽  
Vol 77 (2) ◽  
pp. 653-663 ◽  
Author(s):  
M. Domínguez-Beisiegel ◽  
C. Castañeda ◽  
J. Herrero
Keyword(s):  

mSphere ◽  
2018 ◽  
Vol 3 (5) ◽  
Author(s):  
Fuzhou Xu ◽  
Ximin Zeng ◽  
Atsushi Hinenoya ◽  
Jun Lin

ABSTRACT Extensive use of colistin in food animals is deemed a major driving force for the emergence and transmission of mcr-1. However, a non-colistin usage factor(s) contributing to mobile colistin resistance may also exist in animal production systems. Given that polymyxin, a bacterium-derived peptide antibiotic, has been successfully used as a surrogate to study bacterial resistance to antimicrobial peptides (AMPs), acquisition of MCR-1 may confer cross-resistance to the unrelated AMPs implicated in practical applications. To test this, we first constructed Escherichia coli recombinant strains differing only in the presence or absence of functional MCR-1. Among diverse tested AMPs, MCR-1 was observed to confer cross-resistance to bacitracin, an in-feed antibiotic widely used in animal industry. The significantly (2-fold) increased bacitracin MIC was confirmed by using different bacitracin products, broth media, and laboratory host strains for susceptibility tests. Subsequently, an original mcr-1 gene-bearing plasmid, pSLy21, was conjugatively transferred to eight clinical E. coli recipient strains isolated from diarrheic pigs, which also led to significantly increased MICs of both colistin (4-fold to 8-fold) and bacitracin (2-fold). Growth curve examination further demonstrated that MCR-1 provides a growth advantage to various E. coli strains in the presence of bacitracin. Given that bacitracin, a feed additive displaying low absorption in the intestine, can be used in food animals with no withdrawal required, imprudent use of bacitracin in food animals may serve as a risk factor to enhance the ecological fitness of MCR-1-positive E. coli strains, consequently facilitating the persistence and transmission of plasmid-mediated colistin resistance in agricultural ecosystem. IMPORTANCE Polymyxins (e.g., colistin) are the drugs of last resort to treat multidrug-resistant infections in humans. To control mobile colistin resistance, there is a worldwide trend to limit colistin use in animal production. However, simply limiting colistin use in animal production may still not effectively mitigate colistin resistance due to an overlooked non-colistin usage factor(s). Using controlled systems, in this study, we observed that MCR-1 confers cross-resistance to bacitracin, a popular in-feed antibiotic used in food animals. Thus, imprudent and extensive usage of bacitracin in food animals may serve as a non-colistin usage risk factor for the transmissible colistin resistance. Further comprehensive in vitro and in vivo studies are highly warranted to generate science-based information for risk assessment and risk management of colistin resistance, consequently facilitating the development of proactive and effective strategies to mitigate colistin resistance in animal production system and protect public health.


2015 ◽  
Vol 12 (6) ◽  
pp. 1671-1682 ◽  
Author(s):  
J. Meyer ◽  
U. Riebesell

Abstract. Concerning their sensitivity to ocean acidification, coccolithophores, a group of calcifying single-celled phytoplankton, are one of the best-studied groups of marine organisms. However, in spite of the large number of studies investigating coccolithophore physiological responses to ocean acidification, uncertainties still remain due to variable and partly contradictory results. In the present study we have used all existing data in a meta-analysis to estimate the effect size of future pCO2 changes on the rates of calcification and photosynthesis and the ratio of particulate inorganic to organic carbon (PIC / POC) in different coccolithophore species. Our results indicate that ocean acidification has a negative effect on calcification and the cellular PIC / POC ratio in the two most abundant coccolithophore species: Emiliania huxleyi and Gephyrocapsa oceanica. In contrast, the more heavily calcified species Coccolithus braarudii did not show a distinct response when exposed to elevated pCO2/reduced pH. Photosynthesis in Gephyrocapsa oceanica was positively affected by high CO2, while no effect was observed for the other coccolithophore species. There was no indication that the method of carbonate chemistry manipulation was responsible for the inconsistent results regarding observed responses in calcification and the PIC / POC ratio. The perturbation method, however, appears to affect photosynthesis, as responses varied significantly between total alkalinity (TA) and dissolved inorganic carbon (DIC) manipulations. These results emphasize that coccolithophore species respond differently to ocean acidification, both in terms of calcification and photosynthesis. Where negative effects occur, they become evident at CO2 levels in the range projected for this century in the case of unabated CO2 emissions. As the data sets used in this meta-analysis do not account for adaptive responses, ecological fitness and ecosystem interactions, the question remains as to how these physiological responses play out in the natural environment.


2016 ◽  
Vol 34 (1-2) ◽  
pp. 64-71 ◽  
Author(s):  
S. Burman ◽  
E.C. Hoedt ◽  
S. Pottenger ◽  
N.-S. Mohd-Najman ◽  
P. Ó Cuív ◽  
...  

While it is now accepted that the gut microbiota contribute to the genotype-environment-lifestyle interactions triggering inflammatory bowel disease (IBD) episodes, efforts to identify the pathogen(s) that cause these diseases have met with limited success. The advent of culture-independent techniques for characterizing the structure and/or function of microbial communities (hereafter referred to as metagenomics) has provided new insights into the events associated with the onset, remission and recurrence of IBD. A large number of observational and/or case-control studies of IBD patients have confirmed substantive changes in gut bacterial profiles (dysbiosis) associated with disease. These types of studies have been augmented by new profiling approaches that support the identification of more ‘colitogenic' bacteria from numerically predominant taxa. Evidence of alterations in lesser abundant taxa such as the methanogenic archaea, to favor types that are more immunogenic, has also been forthcoming. Several recent longitudinal studies of patients with Crohn's disease have produced additional insights, including evidence for the role of ‘anti-inflammatory' microbiota in providing a protective effect and/or promoting remission. In summation, the implications of dysbiosis and restoration of a ‘healthy microbiota' in IBD patients requires definition beyond a taxonomic assessment of the changes in the gut microbiota during disease course. The available evidence does suggest that specific members of the gut microbiota can contribute either pro- or anti-inflammatory effects, and their ecological fitness in the large bowel affects the onset and recurrence of IBD. While metagenomics and related approaches offer the potential to provide novel and important insights into these microbiota and thereby the pathophysiology of IBD, we also need to better understand factors affecting the ecological fitness of these microbes, if new treatment of IBD patients are to be delivered.


Sign in / Sign up

Export Citation Format

Share Document