A deep learning method based on convolutional neural network for automatic modulation classification of wireless signals

2018 ◽  
Vol 25 (7) ◽  
pp. 3735-3746 ◽  
Author(s):  
Yu Xu ◽  
Dezhi Li ◽  
Zhenyong Wang ◽  
Qing Guo ◽  
Wei Xiang
2019 ◽  
Vol 8 (4) ◽  
pp. 11416-11421

Batik is one of the Indonesian cultural heritages that has been recognized by the global community. Indonesian batik has a vast diversity in motifs that illustrate the philosophy of life, the ancestral heritage and also reflects the origin of batik itself. Because of the manybatik motifs, problems arise in determining the type of batik itself. Therefore, we need a classification method that can classify various batik motifs automatically based on the batik images. The technique of image classification that is used widely now is deep learning method. This technique has been proven of its capacity in identifying images in high accuracy. Architecture that is widely used for the image data analysis is Convolutional Neural Network (CNN) because this architecture is able to detect and recognize objects in an image. This workproposes to use the method of CNN and VGG architecture that have been modified to overcome the problems of classification of the batik motifs. Experiments of using 2.448 batik images from 5 classes of batik motifs showed that the proposed model has successfully achieved an accuracy of 96.30%.


2022 ◽  
Author(s):  
Xiaofeng Xie ◽  
Chi-Cheng Fu ◽  
Lei Lv ◽  
Qiuyi Ye ◽  
Yue Yu ◽  
...  

AbstractLung cancer is one of the leading causes of cancer-related death worldwide. Cytology plays an important role in the initial evaluation and diagnosis of patients with lung cancer. However, due to the subjectivity of cytopathologists and the region-dependent diagnostic levels, the low consistency of liquid-based cytological diagnosis results in certain proportions of misdiagnoses and missed diagnoses. In this study, we performed a weakly supervised deep learning method for the classification of benign and malignant cells in lung cytological images through a deep convolutional neural network (DCNN). A total of 404 cases of lung cancer cells in effusion cytology specimens from Shanghai Pulmonary Hospital were investigated, in which 266, 78, and 60 cases were used as the training, validation and test sets, respectively. The proposed method was evaluated on 60 whole-slide images (WSIs) of lung cancer pleural effusion specimens. This study showed that the method had an accuracy, sensitivity, and specificity respectively of 91.67%, 87.50% and 94.44% in classifying malignant and benign lesions (or normal). The area under the receiver operating characteristic (ROC) curve (AUC) was 0.9526 (95% confidence interval (CI): 0.9019–9.9909). In contrast, the average accuracies of senior and junior cytopathologists were 98.34% and 83.34%, respectively. The proposed deep learning method will be useful and may assist pathologists with different levels of experience in the diagnosis of cancer cells on cytological pleural effusion images in the future.


2022 ◽  
Vol 10 (1) ◽  
pp. 0-0

Brain tumor is a severe cancer disease caused by uncontrollable and abnormal partitioning of cells. Timely disease detection and treatment plans lead to the increased life expectancy of patients. Automated detection and classification of brain tumor are a more challenging process which is based on the clinician’s knowledge and experience. For this fact, one of the most practical and important techniques is to use deep learning. Recent progress in the fields of deep learning has helped the clinician’s in medical imaging for medical diagnosis of brain tumor. In this paper, we present a comparison of Deep Convolutional Neural Network models for automatically binary classification query MRI images dataset with the goal of taking precision tools to health professionals based on fined recent versions of DenseNet, Xception, NASNet-A, and VGGNet. The experiments were conducted using an MRI open dataset of 3,762 images. Other performance measures used in the study are the area under precision, recall, and specificity.


Author(s):  
Rozilawati Dollah ◽  
Chew Yi ◽  
Norhawaniah Zakaria ◽  
Mohd Shahizan ◽  
Abd Wahid

2021 ◽  
Author(s):  
Farrel Athaillah Putra ◽  
Dwi Anggun Cahyati Jamil ◽  
Briliantino Abhista Prabandanu ◽  
Suhaili Faruq ◽  
Firsta Adi Pradana ◽  
...  

Author(s):  
Uzma Batool ◽  
Mohd Ibrahim Shapiai ◽  
Nordinah Ismail ◽  
Hilman Fauzi ◽  
Syahrizal Salleh

Silicon wafer defect data collected from fabrication facilities is intrinsically imbalanced because of the variable frequencies of defect types. Frequently occurring types will have more influence on the classification predictions if a model gets trained on such skewed data. A fair classifier for such imbalanced data requires a mechanism to deal with type imbalance in order to avoid biased results. This study has proposed a convolutional neural network for wafer map defect classification, employing oversampling as an imbalance addressing technique. To have an equal participation of all classes in the classifier’s training, data augmentation has been employed, generating more samples in minor classes. The proposed deep learning method has been evaluated on a real wafer map defect dataset and its classification results on the test set returned a 97.91% accuracy. The results were compared with another deep learning based auto-encoder model demonstrating the proposed method, a potential approach for silicon wafer defect classification that needs to be investigated further for its robustness.


2019 ◽  
Vol 9 (16) ◽  
pp. 3312 ◽  
Author(s):  
Zhu ◽  
Ge ◽  
Liu

In order to realize the non-destructive intelligent identification of weld surface defects, an intelligent recognition method based on deep learning is proposed, which is mainly formed by convolutional neural network (CNN) and forest random. First, the high-level features are automatically learned through the CNN. Random forest is trained with extracted high-level features to predict the classification results. Secondly, the weld surface defects images are collected and preprocessed by image enhancement and threshold segmentation. A database of weld surface defects is established using pre-processed images. Finally, comparative experiments are performed on the weld surface defects database. The results show that the accuracy of the method combined with CNN and random forest can reach 0.9875, and it also demonstrates the method is effective and practical.


Sign in / Sign up

Export Citation Format

Share Document