Outage Probability and Ergodic Capacity Analysis for Two-Way Relaying System with Different Relay Selection Protocols

2013 ◽  
Vol 72 (4) ◽  
pp. 2047-2067 ◽  
Author(s):  
Hui Zhi ◽  
Longxiang Yang ◽  
Hongbo Zhu
2021 ◽  
Vol 11 (7) ◽  
pp. 3054
Author(s):  
Haodong Liang ◽  
Yiming Li ◽  
Maoke Miao ◽  
Chao Gao ◽  
Xiaofeng Li

This paper investigates the asymmetric dual–hop multiple input multiple output (MIMO) mixed radio frequency (RF)/free space optical (FSO) decode–and–forward (DF) relaying system. This kind of system can utilize two different fading characteristic channels to reduce the possibility of the system falling into deep fading. In addition, each link of the system adopts MIMO technology to mitigate the disadvantages of fading. In this paper, the closed form expressions of the outage probability, bit error rate (BER) and average ergodic capacity are derived. The approximate expression of the system outage probability considering the pointing error is also derived. Additionally, asymptotic performance for diversity order and diversity–multiplexing tradeoff (DMT) of the system is analyzed and discussed, which provides direct theoretical basis for practical engineering design.


Author(s):  
Xin Song ◽  
MingLei Zhang ◽  
WenMIn Liu ◽  
ShengBao Wang

Abstract—To minimize total transmit power in a system while guaranteeing the outage probability at the same time in a cooperative system, we propose and analyse two threshold-based hybrid relay selection and power allocation schemes for a three-node cooperative relaying system. They are designated as: the hybrid amplify-direct-forward relaying (HADF) and incremental hybrid decode-direct-forward relaying (IHDDF) schemes. In the HADF scheme, a specific outage probability threshold is derived to determine that the system chooses to optimize power allocation of its source and relay in amplify-and-forward (AF) mode or optimize the power of its source in direct-transmit (DT) mode without a relay. In IHDDF, according to the outage probability threshold, the system chooses to optimize its power in turn with incremental decode-and-forward opportunistic relaying (IDFO) mode or DT mode. Closed-form expressions of the total transmit power of the proposed HADF and IHDDF schemes are derived. The proposed schemes have low computational complexity and system cost. Theoretical analysis and simulation results show that the HADF scheme outperforms the AF and DT schemes, and the total transmission power of the IHDDF scheme is reduced significantly compared with the IDFO and DT schemes. Compared with the HADF scheme, the IHDDF scheme has a better total transmit power in special channel condition.Keywords—power allocation, three-node cooperative relaying system, amplify-and-forward, incremental decode-and-forward opportunistic relaying.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Phu Tran Tin ◽  
Phan Van-Duc ◽  
Tan N. Nguyen ◽  
Le Anh Vu

In this paper, we investigate the full-duplex (FD) decode-and-forward (DF) cooperative relaying system, whereas the relay node can harvest energy from radiofrequency (RF) signals of the source and then utilize the harvested energy to transfer the information to the destination. Specifically, a hybrid time-power switching-based relaying method is adopted, which leverages the benefits of time-switching relaying (TSR) and power-splitting relaying (PSR) protocols. While energy harvesting (EH) helps to reduce the limited energy at the relay, full-duplex is one of the most important techniques to enhance the spectrum efficiency by its capacity of transmitting and receiving signals simultaneously. Based on the proposed system model, the performance of the proposed relaying system in terms of the ergodic capacity (EC) is analyzed. Specifically, we derive the exact closed form for upper bound EC by applying some special function mathematics. Then, the Monte Carlo simulations are performed to validate the mathematical analysis and numerical results.


Sign in / Sign up

Export Citation Format

Share Document