Design of Defected Ground Structure Band Stop/Band Pass Filters Using Dielectric Resonator

2019 ◽  
Vol 109 (4) ◽  
pp. 2427-2437
Author(s):  
Noha A. Al-Shalaby ◽  
Shaymaa M. Gaber
2013 ◽  
Vol 273 ◽  
pp. 371-374
Author(s):  
Bao Ping Li ◽  
Yan Liang Zhang

Due to the frequency response periodicity of distributed transmission line, microstrip band-pass filter usually produces parasitic pass-band and outputs harmonics away from the center frequency of main pass-band. Based on the study of rectangular ring defected ground structure, a 5-order microstrip LPF(low-pass filter) was designed using the single-pole band-stop and slow-wave characteristics of the rectangular ring DGS(Defected Ground Structure) and SISS(Step-Impedance Shunt Stub) structure. Compared with traditional LPF, this LPF presents the advantages of compact size, low insertion loss, broad stop-band and high steep. It also validates the requirements of miniaturization and high performance for filters.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Pravin Ratilal Prajapati

An application of defected ground structure (DGS) to reduce out-of-band harmonics has been presented. A compact, proximity feed fractal slotted microstrip antenna for wireless local area network (WLAN) applications has been designed. The proposed 3rd iteration reduces antenna size by 43% as compared to rectangular conventional antenna and by introducing H shape DGS, the size of an antenna is further reduced by 3%. The DGS introduces stop band characteristics and suppresses higher harmonics, which are out of the band generated by 1st, 2nd, and 3rd iterations. H shape DGS is etched below the 50 Ω feed line and transmission coefficient parameters (S21) are obtained by CST Microwave Studio software. The values of equivalent L and C model have been extracted using a trial version of the diplexer filter design software. The stop band characteristic of the equivalent LC model also has been simulated by the Advance Digital System software, which gives almost the same response as compared to the simulation of CST Microwave Studio V. 12. The proposed antenna operates from 2.4 GHz to 2.49 GHz, which covers WLAN band and has a gain of 4.46 dB at 2.45 GHz resonance frequency.


2015 ◽  
Vol 77 (12) ◽  
Author(s):  
Kabir Ibrahim Jahun ◽  
Hussein Mohamed Hagi Hassan Abdirahman Mohamud Shire ◽  
Ali Orozi Sougui ◽  
S. H. Dahlan

Compact microstrip band-pass filter design using parallel coupled lines is presented in this paper. The microstrip lines are calculated and constructed using CST studio with two input and output ports of the filter structure are printed over Defected Ground Structure (DGS).The proposed symmetrical structure offers a simple and compact design while exhibiting an improved stop-band characteristics in comparison to conventional coupled microstrip line filter structure. The simulation and measurements of 2GHz prototype band pass filter are presented. The measured result agrees well with the simulation data. Compared with conventional parallel coupled line band pass filter, the second, third and fourth spurious responses are suppressed; in addition, the size of the prototype filter circuit is reduced up to 20.8%.  


2015 ◽  
Vol 15 (1) ◽  
pp. 75-84 ◽  
Author(s):  
D. S. Ramkiran ◽  
B. T. P. Madhav ◽  
Sahithi Krishnaveni Grandhi ◽  
Amara Venkata Sumanth ◽  
Sri Harsha Kota ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
pp. 64-68
Author(s):  
Reena Pant, Rakesh Kumar Maurya, Pradyot Kala

This paper presents a combination of an inductive coupling technique and coplanar ground plane microstrip filter. Here, inductive coupling technique is used to overcome the unwanted radiation loss generated by the gap between the co-planar ground plane and the transmission line which improves filter characteristics. A defected ground structure (DGS) is integrated with the proposed filter to achieve a tri-bandpass characteristic (1.85, 3.53, and 5 GHz) without hampering the filter performance. The experimental results of the proposed filter are found in good agreement with simulated results.


Sign in / Sign up

Export Citation Format

Share Document