scholarly journals Effects of soil physicochemical properties and stand age on fine root biomass and vertical distribution of plantation forests in the Loess Plateau of China

2012 ◽  
Vol 27 (4) ◽  
pp. 827-836 ◽  
Author(s):  
Ruiying Chang ◽  
Bojie Fu ◽  
Guohua Liu ◽  
Xueling Yao ◽  
Shuai Wang
2018 ◽  
Vol 38 (11) ◽  
Author(s):  
吕渡 LÜ Du ◽  
杨亚辉 YANG Yahui ◽  
赵文慧 ZHAO Wenhui ◽  
雷斯越 LEI Siyue ◽  
张晓萍 ZHANG Xiaoping

2019 ◽  
Vol 12 (6) ◽  
pp. 1059-1072
Author(s):  
Lin Wei ◽  
Pengwei Yao ◽  
Guanghua Jing ◽  
Xiefeng Ye ◽  
Jimin Cheng

Abstract Aims Clipping or mowing for hay, as a prevalent land-use practice, is considered to be an important component of global change. Root production and turnover in response to clipping have great implications for the plant survival strategy and grassland ecosystem carbon processes. However, our knowledge about the clipping effect on root dynamics is mainly based on root living biomass, and limited by the lack of spatial and temporal observations. The study aim was to investigate the effect of clipping on seasonal variations in root length production and mortality and their distribution patterns in different soil layers in semiarid grassland on the Loess Plateau. Methods Clipping was performed once a year in June to mimic the local spring livestock grazing beginning from 2014. The minirhizotron technique was used to monitor the root production, mortality and turnover rate at various soil depths (0–10, 10–20, 20–30 and 30–50 cm) in 2014 (from 30 May to 29 October) and 2015 (from 22 April to 25 October). Soil temperature and moisture in different soil layers were also measured during the study period. Important Findings Our results showed that: (i) Clipping significantly decreased the cumulative root production (P < 0.05) and increased the cumulative root mortality and turnover rates of the 0–50 cm soil profile for both years. (ii) Clipping induced an immediate and sharp decrease in root length production and an increase in root length mortality in all soil layers. However, with plant regrowth, root production increased and root mortality decreased gradually, with the root production at a depth of 30–50 cm even exceeding the control in September–October 2014 and April–May 2015. (iii) Clipping mainly reduced root length production and increased root length mortality in the upper 0–20 cm soil profile with rapid root turnover. However, roots at deeper soil layers were either little influenced by clipping or exhibited an opposite trend with slower turnover rate compared with the upper soil profile, leading to the downward transport of root production and living root biomass. These findings indicate that roots in deeper soil layers tend to favour higher root biomass and longer fine root life spans to maximize the water absorption efficiency under environmental stress, and also suggest that short-term clipping would reduce the amount of carbon through fine root litter into the soil, especially in the shallow soil profile.


2014 ◽  
Vol 48 (2) ◽  
pp. 231-235 ◽  
Author(s):  
Hideyuki NOGUCHI ◽  
Rempei SUWA ◽  
Cacilda Adélia Sampaio de SOUZA ◽  
Roseana Pereira da SILVA ◽  
Joaquim dos SANTOS ◽  
...  

Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1236
Author(s):  
Dipendra Singha ◽  
Francis Q. Brearley ◽  
Shri Kant Tripathi

Nitrogen (N) dynamics during changes in land use patterns in tropical forests may profoundly affect fine root dynamics and nutrient cycling processes. Variations in fine root biomass and soil N dynamics were assessed in developing stands of increasing ages following shifting agriculture in Mizoram, Northeast India, and comparisons were made with a natural forest stand. Concentrations of soil available N (NH4-N and NO3-N) and the proportion of NH4-N in total available N increased with stand age. The N-mineralization rate also increased with stand age whilst the proportion of nitrification relative to ammonification declined during succession. Fine root biomass and N-mineralization increased, and available N decreased during the monsoon season while this pattern was reversed during the winter season. A greater proportion of fine roots were <0.5 mm diameter in the younger sites, and turnover of fine roots was more rapid in the developing stands compared to the natural forest. Fine root biomass was correlated positively with N-mineralization rate and soil water content. Thus, it can be concluded that the fine root growth was aided by rapid N-mineralization, and both fine root growth and N-mineralization increase as stands redevelop following shifting cultivation disturbance.


Sign in / Sign up

Export Citation Format

Share Document