Personal monitoring of exposure to particulate matter with a high temporal resolution

2012 ◽  
Vol 19 (7) ◽  
pp. 2959-2972 ◽  
Author(s):  
Anna V. Broich ◽  
Lydia E. Gerharz ◽  
Otto Klemm
2021 ◽  
Vol 8 (1) ◽  
pp. 10
Author(s):  
Eva Merico ◽  
Marianna Conte ◽  
Fabio Massimo Grasso ◽  
Daniela Cesari ◽  
Andrea Gambaro ◽  
...  

Shipping contributions to atmospheric particulate matter were estimated by an approach based on high temporal resolution measurements of mass and number size distribution, correlated with meteorological and ship movements data, in two Adriatic harbours. Trends of contributions are discussed. Contribution to particle number concentrations (PNC) was 3–4 times larger than that to PM2.5. In Venice, strategies for reduction of shipping emissions were effective in lowering the PM2.5 primary impact, while PNC contribution was significant in Brindisi. The maximum contribution was found to ultrafine particles (UFP), followed by a minimum at diameters between 1 and 1.5 µm and a growth in the coarse range.


2010 ◽  
Vol 6 (2) ◽  
pp. 43 ◽  
Author(s):  
Andreas H Mahnken ◽  

Over the last decade, cardiac computed tomography (CT) technology has experienced revolutionary changes and gained broad clinical acceptance in the work-up of patients suffering from coronary artery disease (CAD). Since cardiac multidetector-row CT (MDCT) was introduced in 1998, acquisition time, number of detector rows and spatial and temporal resolution have improved tremendously. Current developments in cardiac CT are focusing on low-dose cardiac scanning at ultra-high temporal resolution. Technically, there are two major approaches to achieving these goals: rapid data acquisition using dual-source CT scanners with high temporal resolution or volumetric data acquisition with 256/320-slice CT scanners. While each approach has specific advantages and disadvantages, both technologies foster the extension of cardiac MDCT beyond morphological imaging towards the functional assessment of CAD. This article examines current trends in the development of cardiac MDCT.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Alexander H. Frank ◽  
Robert van Geldern ◽  
Anssi Myrttinen ◽  
Martin Zimmer ◽  
Johannes A. C. Barth ◽  
...  

AbstractThe relevance of CO2 emissions from geological sources to the atmospheric carbon budget is becoming increasingly recognized. Although geogenic gas migration along faults and in volcanic zones is generally well studied, short-term dynamics of diffusive geogenic CO2 emissions are mostly unknown. While geogenic CO2 is considered a challenging threat for underground mining operations, mines provide an extraordinary opportunity to observe geogenic degassing and dynamics close to its source. Stable carbon isotope monitoring of CO2 allows partitioning geogenic from anthropogenic contributions. High temporal-resolution enables the recognition of temporal and interdependent dynamics, easily missed by discrete sampling. Here, data is presented from an active underground salt mine in central Germany, collected on-site utilizing a field-deployed laser isotope spectrometer. Throughout the 34-day measurement period, total CO2 concentrations varied between 805 ppmV (5th percentile) and 1370 ppmV (95th percentile). With a 400-ppm atmospheric background concentration, an isotope mixing model allows the separation of geogenic (16–27%) from highly dynamic anthropogenic combustion-related contributions (21–54%). The geogenic fraction is inversely correlated to established CO2 concentrations that were driven by anthropogenic CO2 emissions within the mine. The described approach is applicable to other environments, including different types of underground mines, natural caves, and soils.


2021 ◽  
Author(s):  
D. Kersebaum ◽  
S.‐C. Fabig ◽  
M. Sendel ◽  
A. C. Muntean ◽  
R. Baron ◽  
...  

2021 ◽  
Vol 30 ◽  
pp. S205
Author(s):  
N. Lammoza ◽  
P. Ratnakanthan ◽  
T. Moran ◽  
P. O'Sullivan ◽  
K. O'Donnell ◽  
...  

Author(s):  
Matthew J. Cashman ◽  
Allen Gellis ◽  
Eric Boyd ◽  
Mathias Collins ◽  
Scott Anderson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document