scholarly journals Trends of Shipping Impact to Particulate Matter in Two Adriatic Port-Cities

2021 ◽  
Vol 8 (1) ◽  
pp. 10
Author(s):  
Eva Merico ◽  
Marianna Conte ◽  
Fabio Massimo Grasso ◽  
Daniela Cesari ◽  
Andrea Gambaro ◽  
...  

Shipping contributions to atmospheric particulate matter were estimated by an approach based on high temporal resolution measurements of mass and number size distribution, correlated with meteorological and ship movements data, in two Adriatic harbours. Trends of contributions are discussed. Contribution to particle number concentrations (PNC) was 3–4 times larger than that to PM2.5. In Venice, strategies for reduction of shipping emissions were effective in lowering the PM2.5 primary impact, while PNC contribution was significant in Brindisi. The maximum contribution was found to ultrafine particles (UFP), followed by a minimum at diameters between 1 and 1.5 µm and a growth in the coarse range.

2020 ◽  
Vol 64 (5) ◽  
pp. 490-502 ◽  
Author(s):  
Alan da Silveira Fleck ◽  
Cyril Catto ◽  
Gilles L’Espérance ◽  
Jean-Philippe Masse ◽  
Brigitte Roberge ◽  
...  

Abstract Questions still exist regarding which indicator better estimates worker’s exposure to diesel particulate matter (DPM) and, especially for ultrafine particles (UFP), how exposure levels and the characteristics of the particles vary in workplaces with different exposure conditions. This study aimed to quantify and characterize DPM exposures in three workplaces with different exposure levels: an underground mine, a subway tunnel, and a truck repair workshop. The same sampling strategy was used and included measurements of the particle number concentration (PNC), mass concentration, size distribution, transmission electron microscopy (TEM), and the characterization of carbonaceous fractions. The highest geometric means (GMs) of PNC and elemental carbon (EC) were measured in the mine [134 000 (geometric standard deviation, GSD = 1.5) particles cm−3 and 125 (GSD = 2.1) µg m−3], followed by the tunnel [32 800 (GSD = 1.7) particles cm−3 and 24.7 (GSD = 2.4) µg m−3], and the truck workshop [22 700 (GSD = 1.3) particles cm−3 and 2.7 (GSD = 2.4) µg m−3]. This gradient of exposure was also observed for total carbon (TC) and particulate matter. The TC/EC ratio was 1.4 in the mine, 2.5 in the tunnel and 8.7 in the workshop, indicating important organic carbon interference in the non-mining workplaces. EC and PNC were strongly correlated in the tunnel (r = 0.85; P < 0.01) and the workshop (r = 0.91; P < 0.001), but a moderate correlation was observed in the mine (r = 0.57; P < 0.05). Results from TEM showed individual carbon spheres between 10 and 56.5 nm organized in agglomerates, while results from the size distribution profiles showed bimodal distributions with a larger accumulation mode in the mine (93 nm) compared with the tunnel (39 nm) and the truck workshop (34 nm). In conclusion, the composition of the carbonaceous fraction varies according to the workplace, and can interfere with DPM estimation when TC is used as indicator. Also, the dominance of particles <100 nm in all workplaces, the high levels of PNC measured and the good correlation with EC suggest that UFP exposures should receive more attention on occupational routine measurements and regulations.


Toxics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 59 ◽  
Author(s):  
Jolanda Palmisani ◽  
Alessia Di Gilio ◽  
Laura Palmieri ◽  
Carmelo Abenavoli ◽  
Marco Famele ◽  
...  

The present study aims to evaluate the impact of e-cig second-hand aerosol on indoor air quality in terms of ultrafine particles (UFPs) and potential inhalation exposure levels of passive bystanders. E-cig second-hand aerosol characteristics in terms of UFPs number concentration and size distribution exhaled by two volunteers vaping 15 different e-liquids inside a 49 m3 room and comparison with tobacco smoke are discussed. High temporal resolution measurements were performed under natural ventilation conditions to simulate a realistic exposure scenario. Results showed a systematic increase in UFPs number concentration (part cm−3) related to a 20-min vaping session (from 6.56 × 103 to 4.01 × 104 part cm−3), although this was one up to two order of magnitude lower than that produced by one tobacco cigarette consumption (from 1.12 × 105 to 1.46 × 105 part cm−3). E-cig second-hand aerosol size distribution exhibits a bimodal behavior with modes at 10.8 and 29.4 nm in contrast with the unimodal typical size distribution of tobacco smoke with peak mode at 100 nm. In the size range 6–26 nm, particles concentration in e-cig second-hand aerosol were from 2- (Dp = 25.5 nm) to 3800-fold (Dp = 9.31 nm) higher than in tobacco smoke highlighting that particles exhaled by users and potentially inhaled by bystanders are nano-sized with high penetration capacity into human airways.


Author(s):  
Husein Adam Nakhawa ◽  
S.S. Thipse

Today, in the automotive emissions ultrafine and nanoparticles emissions are of very high importance because of their vulnerable effects to environment and human health causing respiratory problems like bronchitis, asthma, cardiovascular disease, and various types of cancers spreading in all age groups in the society leading to premature death [1]. Therefore, characterization of ultrafine and nanoparticles in terms of their size distribution and number concentration for the automobiles operating on various fuels and traffic conditions is of great importance in understanding the phenomenon and the adverse effects. Various research studies carried out at international level show the adverse health effects due to ultrafine particles from C.I. and S.I. engines and hence, there is definite need to examine for the particulate mass, size and number concentration considering social needs [2].Even after very stringent emission norms which were tightened over the years and today down to more than 97% from it’s baseline norms couldn’t show proportionate improvement in the ambient air quality. Climate effects inevitably lead to health effects leading to premature death due to ultrafine particles from the automotive exhaust [1]. Recent WHO report confirmed the vulnerable effect of diesel particles in terms of carcinogenicity and severe health effects of diesel fuel used in automotive sector [3]. European regulations has taken the steps to address this concern by introducing new norms for particle number and PM2.5 as 6 x 1011 and 4.5 mg/km respectively [4]. Investigations carried out on GDI vehicles show substantial ultrafine and nanosize particle emissions and by number, nearly all of the particles emitted by a diesel engine are nanoparticles which are also true for gasoline engines [5]. Like gasoline engines other S.I. engines, even though they look very clean as there is no visible smoke and large particles emitted in their exhaust, it is necessary to investigate them. Very limited research work has been carried out particularly, on CNG engines/ vehicles for their PM and PN levels at national and international level. Characterization of ultrafine and nanoparticles in terms of their size distribution and number concentration for the automobiles operating on various fuels and traffic conditions is of great importance in understanding the phenomenon and their significance.In this context and understanding the social need this research work was carried out to investigate experimentally the significance of CNG and diesel passenger car for it’s contribution to particle number (PN) and PM2.5. This work includes comparative investigation of CNG and diesel passenger cars to characterize the ultrafine and nanoparticle emissions on modified Indian driving cycle. CNG passenger car show large peak of PN emissions during cold starting phase at the beginning of the test cycle which is almost twice that of diesel vehicle but it settles down to lower level as the vehicle gets warmed up. During acceleration and cruising operation on extra urban cycle under heavy load the PN emissions from CNG car are higher in magnitude. For diesel car, urban part of cycle contributes approximately 53% compared to 25% for CNG vehicle and rest 47% and 75% is contributed by extra urban part towards PN emissions.This research paper covers experimental Investigation carried out to compare the behavior of diesel and CNG passenger cars to characterize the particle emissions and to identify the significance of different operating phases viz. idling, acceleration, deceleration and cruising for their contributions to Particle number and size distribution pattern on urban and on extra urban part of the driving cycle.


2017 ◽  
Vol 17 (5) ◽  
pp. 1142-1155 ◽  
Author(s):  
Sabrina Rovelli ◽  
Andrea Cattaneo ◽  
Francesca Borghi ◽  
Andrea Spinazzè ◽  
Davide Campagnolo ◽  
...  

2020 ◽  
Author(s):  
Shahzad Gani ◽  
Sahil Bhandari ◽  
Kanan Patel ◽  
Sarah Seraj ◽  
Prashant Soni ◽  
...  

Abstract. The Indian national capital, Delhi, routinely experiences some of the world's highest urban particulate matter concentrations. While fine particulate matter (PM2.5) mass concentrations in Delhi are at least an order of magnitude higher than in many western cities, the particle number (PN) concentrations are not similarly elevated. Here we report on 1.25 years of highly time resolved particle size distributions (PSD) data in the size range of 12–560 nm. We observed that the large number of accumulation mode particles – that constitute most of the PM2.5 mass – also contributed substantially to the PN concentrations. The ultrafine particles (UFP, Dp 


Sign in / Sign up

Export Citation Format

Share Document