Erratum to: Potential risk assessment of heavy metals by consuming shellfish collected from Xiamen, China

2012 ◽  
Vol 20 (1) ◽  
pp. 598-598
Author(s):  
Jian Li ◽  
Zhiyong Huang ◽  
Yue Hu ◽  
Hong Yang
2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Xia Sun ◽  
Bao-Shi Li ◽  
Xuan-Li Liu ◽  
Cheng-Xuan Li

Coastal waters are polluted by heavy metals to varying degrees, posing potential risks to marine ecology and human health. In May 2006, the pollution levels, sources, and ecological risks of heavy metals (Cu, Pb, Zn, Cd, Hg, and As) in seawater, surface sediments, and living organisms were studied in Jiuzhen Bay in Fujian, China. This study identified Hg (0.26–0.72 µg/L) and As (20.3–31.5 µg/L) pollution in the seawater of Jiuzhen Bay. In sediments, heavy Pb pollution (946 µg/g dw) was only detected at one station at a level posing very serious potential risk, while Hg pollution (0.052–0.087 µg/g dw) was observed at three stations at a level posing serious potential risk. No heavy metal pollution was detected in sediments at other stations. The concentrations of five heavy metals (Cu, Zn, As, Cd, and Pb) exceeded the corresponding National Quality Standards for oysters, indicating heavy pollution, based on an ecological risk assessment. In clams, two heavy metals (Pb and As) exceeded the standards, indicating light pollution, based on an ecological risk assessment. No heavy metal pollution was found in fish or shrimps. The heavy metals in the seawater and sediments of Jiuzhen Bay are mainly derived from the river discharges of Luxi and Wujiang Rivers although sewage discharge along the coast of Jiuzhen Bay is another source of heavy metal pollution at some stations. Given the pollution of Pb, Hg, and As in seawater and sediments at some stations within the bay, the potential risks of Pb, Hg, and As in living organisms to both the marine ecology and human health deserve increased attention.


2020 ◽  
Vol 115 ◽  
pp. 102812 ◽  
Author(s):  
Shahla Jafarzadeh ◽  
Reza Fouladi Fard ◽  
Esmaeil Ghorbani ◽  
Abedin Saghafipour ◽  
Eslam Moradi-Asl ◽  
...  

Author(s):  
Ting Sun ◽  
Jingling Huang ◽  
Yuying Wu ◽  
Yuan Yuan ◽  
Yujing Xie ◽  
...  

Understanding the environmental risks of soil heavy metals (HMs) and identifying their main sources are the essential prerequisites for the prevention and management of soil pollution. Based on a detailed survey of soil HMs (Cu, Cr, Ni, Zn, Pb, Cd, As and Hg) from different land use types (including agricultural land, construction land, wetland, and forest land) in an estuary alluvial island, the environmental risk and source apportionment of soil HMs were investigated. Altogether, 117 soil samples were taken in the study area to appraise the soil HMs environmental risk by using the geo-accumulation index (Igeo), potential ecological risk index (RI), and human health risk assessment (HRA) and to identify its main sources by using positive matrix factorization (PMF) model. The average concentrations of soil HMs (except As) surpassed their reference background values in China. There were no significant differenced in the mean concentrations of HMs in different land use types, except that the Hg concentration in the construction land was significantly higher than that in others. The results of Igeo showed that Cd pollution was unpolluted to moderately polluted, and that the others were unpolluted. The potential ecological risk level for Cd and Hg was “moderated potential risk”, while for Cu, Cr, Ni, Zn, Pb and As was “low potential risk”. Higher contamination was distributed at the west-central area. The results of the HRA indicated that the non-carcinogenic risk and the carcinogenic risk that human beings suffered from HMs in different land uses were insignificant. To more accurately identify the sources of soil HMs, the PMF model coupled with the GIS-spatial analysis was applied. The results showed that agricultural activities, natural source, industrial discharge and river transportation, and atmosphere deposition were the main determining factors for the accumulation of soil HMs in the study area, with the contribution rate of 24.25%, 23.79%, 23.84%, and 28.12%, respectively. The study provides an underlying insight needed to control of the soil HM pollutions for an estuary alluvial island.


2012 ◽  
Vol 20 (5) ◽  
pp. 2937-2947 ◽  
Author(s):  
Jian Li ◽  
Zhiyong Y. Huang ◽  
Yue Hu ◽  
Hong Yang

Author(s):  
K. Ioannides ◽  
K. Stamoulis ◽  
C. Papachristodoulou ◽  
E. Tziamou ◽  
C. Markantonaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document