Population structure and body size of the Sahara blue-eyed pond turtle Mauremys leprosa saharica, from an isolated pond in the Lower Draa Basin, southern Morocco

Author(s):  
Soumia Loulida ◽  
Mohammed Znari ◽  
Mohamed Naimi ◽  
Safaa Bendami
The Condor ◽  
2006 ◽  
Vol 108 (3) ◽  
pp. 547-557 ◽  
Author(s):  
Guillermo Fernández ◽  
David B. Lank

AbstractWe documented the local density and sex, age-class, and body size distributions of Western Sandpipers (Calidris mauri) among habitats at Bahía Santa María, northwestern Mexico, during the nonbreeding season. Three habitats were recognized: brackish flats, mangroves, and cattail marshes, which we ranked as richest to poorest in food resources and safest to most dangerous in predation danger. Western Sandpiper population structure differed among habitats. Bird densities were highest in brackish flats, the richest and safest habitat, and males and adults of both sexes were overrepresented. In cattail marshes, which appeared to be the poorest and most dangerous habitat, bird densities were lower, and the sex ratio and age ratios within each sex were more even. In mangroves, bird densities were similar to those in cattail marshes, but sex and age ratios were similar to those in brackish flats. Exposed culmen, an index of structural size, was not related to habitat use in either sex. Body mass of immature males was more variable than that of adults among habitats and immature males gained mass throughout the winter. Birds in brackish flats and mangroves were initially heavier, but tended to lose mass, whereas birds in cattail marshes were initially lighter, but tended to gain mass. Mass distributions thus converged in late winter. While the social and ecological causes and significance of differential sex and age-class distributions among habitats remain largely unquantified, evidence from this and previous studies suggests that nonbreeding population structure is a common phenomenon with important implications for migratory shorebirds.


2011 ◽  
Vol 38 (4) ◽  
pp. 271 ◽  
Author(s):  
Nick Gust ◽  
Josh Griffiths

Context Despite widespread interest in platypus (Ornithorhynchus anatinus) conservation, it is unclear how their fundamental morphometric and demographic characteristics differ over a range of scales. This hampers impact assessments and understanding of platypus ecology. Although the ulcerative fungal disease mucormycosis has infected platypuses in Tasmania for three decades, its population level impacts and conservation significance remain unknown. Aims This study examined morphometric and demographic patterns in Tasmanian platypuses to provide a basis for investigating impacts of mucormycosis or other anthropogenic disturbances. It also sought to identify important spatial scales of natural variability and the magnitude of seasonal variation in platypus body size, condition and population structure. The hypothesis of higher mucormycosis prevalence and mortality in adult males was also investigated. Methods Extensive live-trapping surveys were conducted from January 2008 to July 2009 in 75 streams and 18 river catchments across Tasmania including King Island. The sex, age, body size, tail volume index, health and moult condition of 195 individuals were assessed, and population age and sex structures characterised. Sampling focussed on assessing variability within and between river catchments and compared populations in river catchments with contrasting disease status. Key results Differences in platypus morphometrics within and between catchments and seasonal moulting patterns were detected. Adult males had higher fat stores than adult females, especially during winter. This study also provided the first evidence of population level consequences of disease in platypuses. The demographic group most commonly affected by mucormycosis was confirmed to be adult males. Differences in male age structure among catchments of varying disease status were consistent with the hypothesis of higher adult male mortality rates and turnover in currently affected catchments. Conclusions More than 25 years after mucormycosis was first detected in Tasmanian platypuses, the disease continues to play a low-level, ongoing role in affected populations. Implications The present study provides the first systematic multi-scale spatial investigation of platypus mucormycosis, which contributes to unravelling the epidemiology of the disease and detecting its impacts. By identifying the magnitude and important scales of morphometric and demographic differences in Tasmanian platypuses the study also assists researchers choose comparable demographic groups and spatial scales for meaningful comparisons in future impact studies.


2021 ◽  
Vol 5 (5) ◽  
Author(s):  
Jeffrey D Lozier ◽  
Zachary M Parsons ◽  
Lois Rachoki ◽  
Jason M Jackson ◽  
Meaghan L Pimsler ◽  
...  

Abstract Biogeographic clines in morphology along environmental gradients can illuminate forces influencing trait evolution within and between species. Latitude has long been studied as a driver of morphological clines, with a focus on body size and temperature. However, counteracting environmental pressures may impose constraints on body size. In montane landscapes, declines in air density with elevation can negatively impact flight performance in volant species, which may contribute to selection for reduced body mass despite declining temperatures. We examine morphology in two bumble bee (Hymenoptera: Apidae: Bombus Latreille) species, Bombus vancouverensis Cresson and Bombus vosnesenskii Radoszkowski, across mountainous regions of California, Oregon, and Washington, United States. We incorporate population genomic data to investigate the relationship between genomic ancestry and morphological divergence. We find that B. vancouverensis, which tends to be more specialized for high elevations, exhibits stronger spatial-environmental variation, being smaller in the southern and higher elevation parts of its range and having reduced wing loading (mass relative to wing area) at high elevations. Bombus vosnesenskii, which is more of an elevational generalist, has substantial trait variation, but spatial-environmental correlations are weak. Population structure is stronger in the smaller B. vancouverensis, and we find a significant association between elevation and wing loading after accounting for genetic structure, suggesting the possibility of local adaptation for this flight performance trait. Our findings suggest that some conflicting results for body size trends may stem from distinct environmental pressures that impact different aspects of bumble bee ecology, and that different species show different morphological clines in the same region.


2017 ◽  
Vol 25 (2) ◽  
pp. 88
Author(s):  
Samira Fediras ◽  
Rachid Rouag ◽  
Nadia Ziane ◽  
Anthony Olivier ◽  
Arnaud Béchet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document