fragmented habitat
Recently Published Documents


TOTAL DOCUMENTS

141
(FIVE YEARS 26)

H-INDEX

28
(FIVE YEARS 1)

2021 ◽  
Vol 69 (3) ◽  
Author(s):  
Katra Laidlaw ◽  
Eben Broadbent ◽  
Stephanie Eby

 Introduction: Although wildlife crossing structures have proven successful at reducing wildlife-vehicle collisions and linking fragmented habitat, their ability to prevent electrocutions of arboreal wildlife has not been closely examined. Objective: To evaluate the effectiveness of aerial rope bridges in restoring habitat connectivity for arboreal species in Manuel Antonio, Costa Rica, while preventing electrocutions by determining 1) what species are using the rope bridges and 2) whether wildlife prefer to use rope bridges instead of other hazardous structures that cross the roads (such as telephone cables, which are often in close proximity to electric wires). Methods: From January to May 2016, nine rope bridges along the highly-trafficked main road that extends from Quepos to Manuel Antonio, Costa Rica, were monitored using camera traps, and ten rope bridges were observed directly along a paved side road off the main road. Results: A total of 11 species were seen using the bridges, and 1 540 crossings were witnessed via camera traps and observations (1 234 via camera traps, 306 during observations). Results from a paired t-test showed no significant difference in the average number of individuals crossing the road via rope bridges versus telephone cables (t(8) = 1.027, P = 0.334). Conclusions: Rope bridges are used by a variety of arboreal wildlife species with a high degree of frequency; however, due to the equally high usage of telephone cables by arboreal wildlife, they are insufficient to prevent wildlife electrocutions on their own. Rope bridges should be installed in tandem with other methods to prevent electrocutions, such as insulating electric wires, to facilitate the safe passage of wildlife over roads.


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2202
Author(s):  
Hashem Althagafi ◽  
Sergei Petrovskii

Habitat fragmentation is recognized as the most serious threat to biodiversity worldwide and has been the focus of intensive research for a few decades. Due to the complexity of the problem, however, there are still many issues that remain poorly understood. In particular, it remains unclear how species extinction or persistence in a fragmented habitat consisting of sites with randomly varying properties can be affected by the strength of inter-site coupling (e.g., due to migration between sites). In this paper, we address this problem by means of numerical simulations using a conceptual single-species spatially-discrete system. We show how an increase in the inter-site coupling changes the population distribution, leading to the formation of persistence domains separated by extinction domains. Having analysed the simulation results, we suggest a simple heuristic criterion that allows one to distinguish between different spatial domains where the species either persists or goes extinct.


Ecography ◽  
2021 ◽  
Vol 44 (10) ◽  
pp. 1568-1578
Author(s):  
Yuhao Zhao ◽  
Nathan J. Sanders ◽  
Juan Liu ◽  
Tinghao Jin ◽  
Haonan Zhou ◽  
...  

2021 ◽  
Vol 1943 (1) ◽  
pp. 012068
Author(s):  
A Basukriadi ◽  
E Nurdin ◽  
A Adiwibowo ◽  
N I Kamilia ◽  
P Jason ◽  
...  
Keyword(s):  

2021 ◽  
Vol 81 ◽  
pp. 165-180
Author(s):  
James B. Dorey

The Australian endemic bee, Pharohylaeus lactiferus (Colletidae: Hylaeinae) is a rare species that requires conservation assessment. Prior to this study, the last published record of this bee species was from 1923 in Queensland, and nothing was known of its biology. Hence, I aimed to locate extant populations, provide biological information and undertake exploratory analyses relevant to its assessment. Pharohylaeus lactiferus was recently rediscovered as a result of extensive sampling of 225 general and 20 targeted sampling sites across New South Wales and Queensland. Collections indicate possible floral and habitat specialisation with specimens only found near Tropical or Sub-Tropical Rainforest and only visiting Stenocarpus sinuatus (Proteaceae) and Brachychiton acerifolius (Malvaceae), to the exclusion of other available floral resources. Three populations were found by sampling bees visiting these plant species along much of the Australian east coast, suggesting population isolation. GIS analyses used to explore habitat destruction in the Wet Tropics and Central Mackay Coast bioregions indicate susceptibility of Queensland rainforests and P. lactiferus populations to bushfires, particularly in the context of a fragmented landscape. Highly fragmented habitat and potential host specialisation might explain the rarity of P. lactiferus. Targeted sampling and demographic analyses are likely required to thoroughly assess the status of this species and others like it.


Conservation ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 1-16
Author(s):  
Lorenzo Rugiero ◽  
Massimo Capula ◽  
Massimiliano Di Vittorio ◽  
Daniele Dendi ◽  
Roger Meek ◽  
...  

Habitat modification is a major factor in the decline of reptile populations. The degree of the decline has been shown to be directly related to the intensity of habitat modification. Farming practices and urbanization are just two of the factors involved indicating that the development of practices that minimize or cancel anthropogenic impacts is urgently needed to prevent further declines. This requires knowledge of population ecology of reptiles in both disturbed and pristine habitats. In this paper, we describe aspects of green lizard (Lacerta bilineata) population ecology in a forest–pasture relatively pristine mosaic habitat in central Italy and a fragmented habitat in western France. In Italy, habitat niche overlap was very high between males and females but very low between males and juveniles. For male and female abundances, general linear models showed that the adult abundances increased with the increase of Rubus bushes, whereas juvenile abundance increased with the increase of Spartium bushes. Contingency table analysis showed that juveniles were also much more frequently observed in grasslands than adults of either sexes. The observed ontogenetic structural niche pattern was likely due to intraspecific competition avoidance, competition interference, and cannibalism. The persistence of the same patterns across years demonstrates a temporal stability of the ontogenetic structural niche pattern. Over the length of the study period, population densities were stable in the Italian population, but densities were much higher by around five times in the hedgerow in the fragmented habitat in France. In the hedgerow, monthly lizard presence was uneven, with the greatest number of sightings in June and July. Overall, our study provided no support for the notion that lizard abundance/density should be lower in modified compared to unmodified habitats, and clearly revealed that a careful management of the hedgerows is crucial for the conservation of this lizard species in agro-forest ecosystems.


Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 135
Author(s):  
Keng-Lou James Hung ◽  
Sara S. Sandoval ◽  
John S. Ascher ◽  
David A. Holway

Global climate change is causing more frequent and severe droughts, which could have serious repercussions for the maintenance of biodiversity. Here, we compare native bee assemblages collected via bowl traps before and after a severe drought event in 2014 in San Diego, California, and examine the relative magnitude of impacts from drought in fragmented habitat patches versus unfragmented natural reserves. Bee richness and diversity were higher in assemblages surveyed before the drought compared to those surveyed after the drought. However, bees belonging to the Lasioglossum subgenus Dialictus increased in abundance after the drought, driving increased representation by small-bodied, primitively eusocial, and generalist bees in post-drought assemblages. Conversely, among non-Dialictus bees, post-drought years were associated with decreased abundance and reduced representation by eusocial species. Drought effects were consistently greater in reserves, which supported more bee species, than in fragments, suggesting that fragmentation either had redundant impacts with drought, or ameliorated effects of drought by enhancing bees’ access to floral resources in irrigated urban environments. Shifts in assemblage composition associated with drought were three times greater compared to those associated with habitat fragmentation, highlighting the importance of understanding the impacts of large-scale climatic events relative to those associated with land use change.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Erin E. Poor ◽  
Brian K. Scheick ◽  
Jennifer M. Mullinax

Abstract Globally, wide-ranging carnivore populations are imperiled due to human-caused habitat fragmentation. Where populations are fragmented, habitat quantification is often the first step in conservation. Presence-only species distribution models can provide robust results when proper scales and data are considered. We aimed to identify habitat for a fragmented carnivore population at two scales and aid conservation prioritization by identifying potential future habitat fragmentation. We used location data and environmental variables to develop a consensus model using Maxent and Mahalanobis distance to identify black bear (Ursus americanus floridanus) habitat across Florida, USA. We compared areas of habitat to areas of predicted sea level rise, development, and protected areas. Local-scale models performed better than state-scale models. We identified 23,798 km2 of habitat at the local-scale and 45,703 km2 at the state-scale. Approximately 10% of state- and 14% of local-scale habitat may be inundated by 2100, 16% of state- and 7% of local-scale habitat may be developed, and 54% of state- and 15% of local-scale habitat is unprotected. Results suggest habitat is at risk of fragmentation. Lack of focused conservation and connectivity among bear subpopulations could further fragmentation, and ultimately threaten population stability as seen in other fragmented carnivore populations globally.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Davide Baldan ◽  
Jenny Q. Ouyang

Abstract The amount of care parents provide to the offspring is complicated by an evolutionary conflict of interest (‘sexual conflict’) between the two parents. Recent theoretical models suggest that pair coordination of the provisioning may reduce this conflict and increase parent and offspring fitness. Despite empirical studies showing that pair coordination is common in avian species, it remains unclear how environmental and ecological conditions might promote or limit the ability of parents to coordinate care. We compared the level of pair coordination, measured as alternation and synchrony of the nest visits, of house wrens Troglodytes aedon pairs breeding in a rural (10 nests) and a suburban (9 nests) site and investigated how differences in parental behaviours were related to habitat composition, prey abundance and how they ultimately related to reproductive success. We found that parents alternated and synchronized their nest visits more in the rural site compared to the suburban one. The suburban site is characterized by a more fragmented habitat with more coniferous trees and less caterpillar availability. Offspring from the rural site were heavier at fledging than at the suburban site. Taken together, these results suggest that environmental conditions play an important role on the emergence of coordinated parental care and that considering environmental variables is pivotal to assess the fitness consequences of parental strategies.


2020 ◽  
Vol 12 (18) ◽  
pp. 7657
Author(s):  
Ana Cristina Mosebo Fernandes ◽  
Rebeca Quintero Gonzalez ◽  
Marie Ann Lenihan-Clarke ◽  
Ezra Francis Leslie Trotter ◽  
Jamal Jokar Arsanjani

Wildlife species’ habitats throughout North America are subject to direct and indirect consequences of climate change. Vulnerability assessments for the Intermountain West regard wildlife and vegetation and their disturbance as two key resource areas in terms of ecosystems when considering climate change issues. Despite the adaptability potential of certain wildlife, increased temperature estimates of 1.67–2 °C by 2050 increase the likelihood and severity of droughts, floods, heatwaves and wildfires in Utah. As a consequence, resilient flora and fauna could be displaced. The aim of this study was to locate areas of habitat for an exemplary species, i.e., sage-grouse, based on current climate conditions and pinpoint areas of future habitat based on climate projections. The locations of wildlife were collected from Volunteered Geographic Information (VGI) observations in addition to normal temperature and precipitation, vegetation cover and other ecosystem-related data. Four machine learning algorithms were then used to locate the current sites of wildlife habitats and predict suitable future sites where wildlife would likely relocate to, dependent on the effects of climate change and based on a timeframe of scientifically backed temperature-increase estimates. Our findings show that Random Forest outperforms other competing models, with an accuracy of 0.897, and a sensitivity and specificity of 0.917 and 0.885, respectively, and has great potential in Species Distribution Modeling (SDM), which can provide useful insights into habitat predictions. Based on this model, our predictions show that sage-grouse habitats in Utah will continue to decrease over the coming years due to climate change, producing a highly fragmented habitat and causing a loss of close to 70% of their current habitat. Priority Areas of Conservation (PACs) and protected areas might be deemed insufficient to halt this habitat loss, and more effort should be put into maintaining connectivity between patches to ensure the movement and genetic diversity within the sage-grouse population. The underlying data-driven methodical approach of this study could be useful for environmentalists, researchers, decision-makers, and policymakers, among others.


Sign in / Sign up

Export Citation Format

Share Document