The effects of biochar/compost for adsorption behaviors of sulfamethoxazole in amended wetland soil

Author(s):  
Siqun Tang ◽  
Jie Liang ◽  
Jilai Gong ◽  
Biao Song ◽  
Zhaoxue Yang ◽  
...  
1997 ◽  
Vol 35 (7) ◽  
pp. 123-130 ◽  
Author(s):  
J. C. Liu ◽  
P. S. Chang

The solubility of chlorophenols as affected by surfactant was investigated. Three kinds of surfactant, sodium dodecyl sulfate, Triton X-100, and Brij 35, were utilized. The solubilization of chlorophenols by surfactant follows the order of 2,4,6-trichlorophenol > 2,4-dichlorophenol > 2,6-dichlorophenol > 2-chlorophenol; and the critical micelle concentration is an important index. The adsorption reactions of 2,4-dichlorophenol and 2,4,6- trichlorophenol onto hydrous montmorillonite in the presence of surfactant were examined. The presence of surfactant decreased the adsorption of chlorophenols significantly. The roles of hydrophobicity of chlorophenols in solubilization and adsorption behaviors are discussed.


Author(s):  
Zhiyong Xu ◽  
Yunqin Lin ◽  
Yuejin Lin ◽  
De Yang ◽  
Haomin Zheng

2020 ◽  
Vol 108 (12) ◽  
pp. 955-965
Author(s):  
Jun Liu ◽  
Shilong Shi ◽  
XiaoYu Yin ◽  
Yong Jin ◽  
Chunhai Lu ◽  
...  

AbstractPart weakly alkaline natural uranium-containing water contains abundant Ca2+ and (bi)carbonate. Herein, two kinds of materials, namely mesoporous hydrous manganese dioxide (MHMO) and polyacrylonitrile (PAN)/dolomite composites were synthesized and characterized to evaluate their adsorption behaviors of U(VI) from Ca2+ coexisted bicarbonate solution. Characterization results showed that both samples exhibited good structural stability after U(VI) load. MHMO could coordinate U(VI) through the surface –OH sites, whereas an unfavorable U(VI) adsorption onto mineral composites was deduced. Adsorption tests indicated that increasing Ca2+ and (bi)carbonate amounts suppress U(VI) adsorption process, and ∼19.0 mg/g U adsorbed by MHMO could be obtained in solutions with 1 mmol/L [Ca2+], 5 mmol/L [CO3]T, 50 mg/L [U(VI)]initial at pH 8.0. Moreover, a heterogeneous surface chemical adsorption was verified through kinetics and isotherms study. Results from our study should be useful in exploring the adsorption behaviors and mechanisms of U(VI) on selected inorganic and mineral materials from natural uranium-containing water.


2021 ◽  
Vol 61 (3) ◽  
pp. 1300-1306
Author(s):  
Ruirui Liu ◽  
Honglin Zhai ◽  
Yajie Meng ◽  
Min Zhu ◽  
Tao Wen ◽  
...  
Keyword(s):  

ChemInform ◽  
2016 ◽  
Vol 47 (26) ◽  
Author(s):  
Jie-Feng Tian ◽  
Peng-Ju Li ◽  
Xiao-Xia Li ◽  
Ping-Hua Sun ◽  
Hao Gao ◽  
...  

2014 ◽  
Vol 70 (6) ◽  
pp. 964-971
Author(s):  
Xu Chen ◽  
Zhen-hu Xiong

Magnetic multi-wall carbon nanotubes (M-MWCNTs) were used as an adsorbent for removal of furaltadone from aqueous solutions, and the adsorption behaviors were investigated by varying pH, sorbent amount, sorption time and temperature. The results showed that the adsorption efficiency of furaltadone reached 97% when the dosage of M-MWCNT was 0.45 g · L−1, the pH was 7 and the adsorption time was 150 min. The kinetic data showed that the pseudo-second-order model can fit the adsorption kinetics. The sorption data could be well explained by the Langmuir model under different temperatures. The adsorption process was influenced by both intraparticle diffusion and external mass transfer. The experimental data analysis indicated that the electrostatic attraction and π–π stacking interactions between M-MWCNT and furaltadone might be the adsorption mechanism. Thermodynamic analysis reflected that adsorption of furaltadone on the M-MWCNT was spontaneous and exothermic. Our study showed that M-MWCNTs can be used as a potential adsorbent for removal of furaltadone from water and wastewater.


RSC Advances ◽  
2014 ◽  
Vol 4 (42) ◽  
pp. 21899 ◽  
Author(s):  
Seul-Yi Lee ◽  
Soo-Jin Park

1992 ◽  
Vol 294 ◽  
Author(s):  
V. S. Tripathi ◽  
M.D. Siegel ◽  
Z. S. Kooner

ABSTRACTAn important question concerning the transport of radionuclides from nuclear waste repositories is whether the adsorption of metals by rocks and soils can be predicted from the properties of the constituent minerals. Attempts by previous researchers to use sorption models based on linear adsorption or weighted "sorptive additivity" have met with limited success. In this study, a “competitive-additivity” model based on surface complexation theory was used to model the pH-dependent adsorption of lead by goethite/Ca-montmorillonite mixtures using complexation constants obtained from single sorbent systems. Measurements of lead adsorption by goethite, Ca-montmorillonite, and goethite-Ca-montmorillonite mixtures (and similar studies of copper and zinc adsorption) demonstrate that the two adsorbents compete for adsorption of metals over wide ranges of pH and concentrations of adsorbents and metals. The adsorption behaviors of the mixtures are determined by the relative concentrations of the adsorbents and their respective affinities for the adsorbate metal. Particle-particle interactions such as heterocoagulation of the oxide and clay do not appear to be significant for the majority of the adsorption sites in this system.


Sign in / Sign up

Export Citation Format

Share Document