Global warming potential of typical rural domestic waste treatment modes in China: a case study in Ankang

Author(s):  
Hanwen Guo ◽  
Xiaoqin Nie ◽  
Tianchu Shu ◽  
Xu Li ◽  
Binjie Bai
Batteries ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 29
Author(s):  
Leonard Kurz ◽  
Mojtaba Faryadras ◽  
Ines Klugius ◽  
Frederik Reichert ◽  
Andreas Scheibe ◽  
...  

Due to the increasing demand for battery electric vehicles (BEVs), the need for vehicle battery raw materials is increasing. The traction battery (TB) of an electric vehicle, usually a lithium-ion battery (LIB), represents the largest share of a BEV’s CO2 footprint. To reduce this carbon footprint sustainably and to keep the raw materials within a closed loop economy, suitable and efficient recycling processes are essential. In this life cycle assessment (LCA), the ecological performance of a waterjet-based direct recycling process with minimal use of resources and energy is evaluated; only the recycling process is considered, waste treatment and credits for by-products are not part of the analysis. Primary data from a performing recycling company were mainly used for the modelling. The study concludes that the recycling of 1 kg of TB is associated with a global warming potential (GWP) of 158 g CO2 equivalents (CO2e). Mechanical removal using a water jet was identified as the main driver of the recycling process, followed by an air purification system. Compared to conventional hydro- or pyrometallurgical processes, this waterjet-based recycling process could be attributed an 8 to 26 times lower GWP. With 10% and 20% reuse of recyclate in new cells, the GWP of TBs could be reduced by 4% and 8%, respectively. It has been shown that this recycling approach can be classified as environmentally friendly.


2021 ◽  
Vol 22 (2) ◽  
pp. 147-161
Author(s):  
Rahmah Arfiyah Ula ◽  
Agus Prasetya ◽  
Iman Haryanto

ABSTRACT The primary municipal waste treatment in Tuban Regency, East Java, was landfilling, besides the small amount of the waste was turned to compost. Landfilling causes global warming, which leads to climate change due to CH4 emission. This environmental impact could be worst by the population growth that increases the amount of waste. This study aimed to evaluate the environmental impact on waste management in the Gunung Panggung landfill in Tuban Regency and its alternative scenarios using Life Cycle Assessment (LCA). Four scenarios were used in this study. They are one existing scenario and three alternative scenarios comprising landfilling, composting, and anaerobic digestion. The scope of this study includes waste transportation to waste treatment which is landfilling, composting, and anaerobic digestion (AD). The functional unit of this analysis is per ton per year of treated waste. Environmental impacts selected are global warming potential, acidification potential, and eutrophication potential. The existing waste management in Gunung Panggung landfill showed the higher global warming potential because of the emission of CO2 and cost for human health, which is 6.379.506,17 CO2 eq/year and 5,92 DALY, respectively. Scenario 3 (landfilling, composting, and AD; waste sortation 70%) showed a lower environmental impact than others, but improvements were still needed. Covering compost pile or controlling compost turning frequency was proposed for scenario 3 amendment. Keywords: environmental impact, landfill, life cycle assessment, waste management   ABSTRAK Landfill merupakan pengelolaan sampah utama di tempat pemrosesan akhir (TPA) Gunung Panggung Kabupaten Tuban. Selain landfill, pengomposan diterapkan untuk mengolah sebagian kecil sampahnya. Landfill menghasilkan gas metana yang menyebabkan pemanasan global dan memicu perubahan iklim. Pertambahan penduduk memperbanyak sampah yang perlu diolah di TPA dan dapat memperparah dampak lingkungan yang ditimbulkan. Tujuan penelitian ini adalah menilai dampak lingkungan dari pengelolaan sampah eksisting di TPA Gunung Panggung Kabupaten Tuban Jawa Timur beserta skenario alternatifnya menggunakan Life Cycle Assessment (LCA). Terdapat satu skenario eksisting dan tiga skenario alternatif pengelolaan sampah yaitu landfilling, pengomposan, dan fermentasi anaerob (anaerobic digestion). Ruang lingkup studi meliputi pengangkutan sampah, pengelolaan sampah dengan cara pengomposan, Anaerobic Digestion (AD), dan landfill. Satuan fungsional yang digunakan yakni ton sampah yang diolah per tahun. Dampak lingkungan yang dipelajari di antaranya: pemanasan global, asidifikasi, dan eutrofikasi. Dampak lingkungan skenario eksisting menunjukkan nilai tertinggi terutama pada pemanasan global (6.379.506,17 CO2eq/tahun) dan kerugian pada kesehatan manusia (5,92 DALY). Skenario alternatif 3, yang meliputi pengelolaan secara landfill, pengomposan, dan AD menunjukkan dampak lingkungan yang kecil, namun memerlukan perbaikan. Perbaikan untuk skenario 3 yaitu dengan menambahkan penutup pada tumpukan kompos atau mengontrol frekuensi pembalikan kompos untuk mengurangi emisi NH3. Kata kunci: dampak lingkungan, life cycle assessment, pengelolaan sampah, tempat pemrosesan akhir


Author(s):  
Thai Thi Thanh Minh ◽  
Nguyen Trung Anh ◽  
Joo Young Lee ◽  
Bach Quang Dung

The study focuses on assessing the potential and economic efficiency of reducing greenhouse gas (GHG) emissions from organic solid waste treatment technologies, including: Non-recovery landfill, landfill and gas recovery for power generation (applied in Nam Son disposal site) and composting (applied in Cau Dien disposal site) in Hanoi. Research results illustrate that, the treatment of 1 ton of organic domestic waste by landfill without gas recovery and landfill with gas recovery need to cover losses about $14.2 USD and $0.9 USD, respectively. While application of composting technology makes a profit about $5.1 USD. Composting had the potential to significantly reduce GHG emissions and used the product after the treatment in commerce to have capital for reinvestment but it was also planned by Hanoi People’s Committee for waste treatment in the future. However, the roadmap for converting to composting technology should be implemented from 2030.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2291
Author(s):  
Laura Brenes-Peralta ◽  
María F. Jiménez-Morales ◽  
Rooel Campos-Rodríguez ◽  
Fabio De Menna ◽  
Matteo Vittuari

Economies have begun to shift from linear to circular, adopting, among others, waste-to-energy approaches. Waste management is known to be a paramount challenge, and food waste (FW) in particular, has gained the interest of several actors due to its potential impacts and energy recovery opportunities. However, the selection of alternative valorization scenarios can pose several queries in certain contexts. This paper evaluates four FW valorization scenarios based on anaerobic digestion and composting, in comparison to landfilling, by applying a consistent decision-making framework through a combination of linear programming, Life Cycle Thinking (LCT), and Analytic Hierarchy Process (AHP). The evaluation was built upon a case study of five universities in Costa Rica and portrayed the trade-offs between environmental impacts and cost categories from the scenarios and their side flows. Results indicate that the landfill scenario entails higher Global Warming Potential and Fresh Water Eutrophication impacts than the valorization scenarios; however, other impact categories and costs are affected. Centralized recovery facilities can increase the Global Warming Potential and the Land Use compared to semi-centralized ones. Experts provided insights, regarding the ease of adoption of composting, in contrast to the potential of energy sources substitution and economic savings from anaerobic digestion.


Sign in / Sign up

Export Citation Format

Share Document