scholarly journals Older age, male sex, and cerebral microbleeds predict white matter loss after traumatic brain injury

GeroScience ◽  
2021 ◽  
Author(s):  
David J. Robles ◽  
Ammar Dharani ◽  
Kenneth A. Rostowsky ◽  
Nikhil N. Chaudhari ◽  
Van Ngo ◽  
...  
2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 886-887
Author(s):  
Andrei Irimia ◽  
Ammar Dharani ◽  
Van Ngo ◽  
David Robles ◽  
Kenneth Rostowsky

Abstract Mild traumatic brain injury (mTBI) affects white matter (WM) integrity and accelerates neurodegeneration. This study assesses the effects of age, sex, and cerebral microbleed (CMB) load as predictors of WM integrity in 70 subjects aged 18-77 imaged acutely and ~6 months after mTBI using diffusion tensor imaging (DTI). Two-tensor unscented Kalman tractography was used to segment and cluster 73 WM structures and to map changes in their mean fractional anisotropy (FA), a surrogate measure of WM integrity. Dimensionality reduction of mean FA feature vectors was implemented using principal component (PC) analysis, and two prominent PCs were used as responses in a multivariate analysis of covariance. Acutely and chronically, older age was significantly associated with lower FA (F2,65 = 8.7, p < .001, η2 = 0.2; F2,65 = 12.3, p < .001, η2 = 0.3, respectively), notably in the corpus callosum and in dorsolateral temporal structures, confirming older adults’ WM vulnerability to mTBI. Chronically, sex was associated with mean FA (F2,65 = 5.0, p = 0.01, η2 = 0.1), indicating males’ greater susceptibility to WM degradation. Acutely, a significant association was observed between CMB load and mean FA (F2,65 = 5.1, p = 0.009, η2 = 0.1), suggesting that CMBs reflect the acute severity of diffuse axonal injury. Together, these findings indicate that older age, male sex, and CMB load are risk factors for WM degeneration. Future research should examine how sex- and age-mediated WM degradation lead to cognitive decline and connectome degeneration after mTBI.


2012 ◽  
Vol 18 (6) ◽  
pp. 1006-1018 ◽  
Author(s):  
Kimberly D.M. Farbota ◽  
Aparna Sodhi ◽  
Barbara B. Bendlin ◽  
Donald G. McLaren ◽  
Guofan Xu ◽  
...  

AbstractAfter traumatic injury, the brain undergoes a prolonged period of degenerative change that is paradoxically accompanied by cognitive recovery. The spatiotemporal pattern of atrophy and the specific relationships of atrophy to cognitive changes are ill understood. The present study used tensor-based morphometry and neuropsychological testing to examine brain volume loss in 17 traumatic brain injury (TBI) patients and 13 controls over a 4-year period. Patients were scanned at 2 months, 1 year, and 4 years post-injury. High-dimensional warping procedures were used to create change maps of each subject's brain for each of the two intervals. TBI patients experienced volume loss in both cortical areas and white matter regions during the first interval. We also observed continuing volume loss in extensive regions of white matter during the second interval. Neuropsychological correlations indicated that cognitive tasks were associated with subsequent volume loss in task-relevant regions. The extensive volume loss in brain white matter observed well beyond the first year post-injury suggests that the injured brain remains malleable for an extended period, and the neuropsychological relationships suggest that this volume loss may be associated with subtle cognitive improvements. (JINS, 2012,18, 1–13)


Brain Injury ◽  
2016 ◽  
Vol 30 (12) ◽  
pp. 1501-1514 ◽  
Author(s):  
Ramtilak Gattu ◽  
Faith W. Akin ◽  
Anthony T. Cacace ◽  
Courtney D. Hall ◽  
Owen D. Murnane ◽  
...  

2015 ◽  
Vol 37 (2) ◽  
pp. 115-130 ◽  
Author(s):  
Beth A. Costine ◽  
Symeon Missios ◽  
Sabrina R. Taylor ◽  
Declan McGuone ◽  
Colin M. Smith ◽  
...  

Stimulation of postnatal neurogenesis in the subventricular zone (SVZ) and robust migration of neuroblasts to the lesion site in response to traumatic brain injury (TBI) is well established in rodent species; however, it is not yet known whether postnatal neurogenesis plays a role in repair after TBI in gyrencephalic species. Here we describe the anatomy of the SVZ in the piglet for the first time and initiate an investigation into the effect of TBI on the SVZ architecture and the number of neuroblasts in the white matter. Among all ages of immaturity examined the SVZ contained a dense mesh network of neurogenic precursor cells (doublecortin+) positioned directly adjacent to the ependymal cells (ventricular SVZ, Vsvz) and neuroblasts organized into chains that were distinct from the Vsvz (abventricular SVZ, Asvz). Though the architecture of the SVZ was similar among ages, the areas of Vsvz and Asvz neuroblast chains declined with age. At postnatal day (PND) 14 the white matter tracts have a tremendous number of individual neuroblasts. In our scaled cortical impact model, lesion size increased with age. Similarly, the response of the SVZ to injury was also age dependent. The younger age groups that sustained the proportionately smallest lesions had the largest SVZ areas, which further increased in response to injury. In piglets that were injured at 4 months of age and had the largest lesions, the SVZ did not increase in response to injury. Similar to humans, swine have abundant gyri and gyral white matter, providing a unique platform to study neuroblasts potentially migrating from the SVZ to the lesioned cortex along these white matter tracts. In piglets injured at PND 7, TBI did not increase the total number of neuroblasts in the white matter compared to uninjured piglets, but redistribution occurred with a greater number of neuroblasts in the white matter of the hemisphere ipsilateral to the injury compared to the contralateral hemisphere. At 7 days after injury, less than 1% of neuroblasts in the white matter were born in the 2 days following injury. These data show that the SVZ in the piglet shares many anatomical similarities with the SVZ in the human infant, and that TBI had only modest effects on the SVZ and the number of neuroblasts in the white matter. Piglets at an equivalent developmental stage to human infants were equipped with the largest SVZ and a tremendous number of neuroblasts in the white matter, which may be sufficient in lesion repair without the dramatic stimulation of neurogenic machinery. It has yet to be determined whether neurogenesis and migrating neuroblasts play a role in repair after TBI and/or whether an alteration of normal migration during active postnatal population of brain regions is beneficial in species with gyrencephalic brains.


Brain Injury ◽  
2013 ◽  
Vol 27 (12) ◽  
pp. 1415-1422 ◽  
Author(s):  
Areeba Adnan ◽  
Adrian Crawley ◽  
David Mikulis ◽  
Morris Moscovitch ◽  
Brenda Colella ◽  
...  

Brain ◽  
2014 ◽  
Vol 137 (7) ◽  
pp. 1876-1882 ◽  
Author(s):  
Tero Ilvesmäki ◽  
Teemu M. Luoto ◽  
Ullamari Hakulinen ◽  
Antti Brander ◽  
Pertti Ryymin ◽  
...  

2016 ◽  
Vol 32 ◽  
pp. 250
Author(s):  
Charalambos Yiannakkaras ◽  
Nikos Konstantinou ◽  
Eva Pettemeridou ◽  
Fofi Constantinidou ◽  
Eleni Eracleous ◽  
...  

2012 ◽  
Vol 117 (6) ◽  
pp. 1300-1310 ◽  
Author(s):  
Damien Galanaud ◽  
Vincent Perlbarg ◽  
Rajiv Gupta ◽  
Robert D. Stevens ◽  
Paola Sanchez ◽  
...  

Background Existing methods to predict recovery after severe traumatic brain injury lack accuracy. The aim of this study is to determine the prognostic value of quantitative diffusion tensor imaging (DTI). Methods In a multicenter study, the authors prospectively enrolled 105 patients who remained comatose at least 7 days after traumatic brain injury. Patients underwent brain magnetic resonance imaging, including DTI in 20 preselected white matter tracts. Patients were evaluated at 1 yr with a modified Glasgow Outcome Scale. A composite DTI score was constructed for outcome prognostication on this training database and then validated on an independent database (n=38). DTI score was compared with the International Mission for Prognosis and Analysis of Clinical Trials Score. Results Using the DTI score for prediction of unfavorable outcome on the training database, the area under the receiver operating characteristic curve was 0.84 (95% CI: 0.75-0.91). The DTI score had a sensitivity of 64% and a specificity of 95% for the prediction of unfavorable outcome. On the validation-independent database, the area under the receiver operating characteristic curve was 0.80 (95% CI: 0.54-0.94). On the training database, reclassification methods showed significant improvement of classification accuracy (P < 0.05) compared with the International Mission for Prognosis and Analysis of Clinical Trials score. Similar results were observed on the validation database. Conclusions White matter assessment with quantitative DTI increases the accuracy of long-term outcome prediction compared with the available clinical/radiographic prognostic score.


Author(s):  
Leilei Mao ◽  
Limin Sun ◽  
Jingyi Sun ◽  
Baoliang Sun ◽  
Yanqin Gao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document