Vestibular, balance, microvascular and white matter neuroimaging characteristics of blast injuries and mild traumatic brain injury: Four case reports

Brain Injury ◽  
2016 ◽  
Vol 30 (12) ◽  
pp. 1501-1514 ◽  
Author(s):  
Ramtilak Gattu ◽  
Faith W. Akin ◽  
Anthony T. Cacace ◽  
Courtney D. Hall ◽  
Owen D. Murnane ◽  
...  
Brain ◽  
2014 ◽  
Vol 137 (7) ◽  
pp. 1876-1882 ◽  
Author(s):  
Tero Ilvesmäki ◽  
Teemu M. Luoto ◽  
Ullamari Hakulinen ◽  
Antti Brander ◽  
Pertti Ryymin ◽  
...  

2017 ◽  
Vol 34 (2) ◽  
pp. 291-299 ◽  
Author(s):  
Juan J. Herrera ◽  
Kurt Bockhorst ◽  
Shakuntala Kondraganti ◽  
Laura Stertz ◽  
João Quevedo ◽  
...  

2021 ◽  
Author(s):  
Paulo Branco ◽  
Noam Bosak ◽  
Jannis Bielefeld ◽  
Olivia Cong ◽  
Yelena Granovsky ◽  
...  

Mild traumatic brain injury, mTBI, is a leading cause of disability worldwide, with acute pain manifesting as one of its most debilitating symptoms. Understanding acute post-injury pain is important since it is a strong predictor of long-term outcomes. In this study, we imaged the brains of 172 patients with mTBI, following a motorized vehicle collision and used a machine learning approach to extract white matter structural and resting state fMRI functional connectivity measures to predict acute pain. Stronger white matter tracts within the sensorimotor, thalamic-cortical, and default-mode systems predicted 20% of the variance in pain severity within 72 hours of the injury. This result generalized in two independent groups: 39 mTBI patients and 13 mTBI patients without whiplash symptoms. White matter measures collected at 6-months after the collision still predicted mTBI pain at that timepoint (n = 36). These white-matter connections were associated with two nociceptive psychophysical outcomes tested at a remote body site – namely conditioned pain modulation and magnitude of suprathreshold pain–, and with pain sensitivity questionnaire scores. Our validated findings demonstrate a stable white-matter network, the properties of which determine a significant amount of pain experienced after acute injury, pinpointing a circuitry engaged in the transformation and amplification of nociceptive inputs to pain perception.


2016 ◽  
Vol 33 (22) ◽  
pp. 2000-2010 ◽  
Author(s):  
Elisabeth A. Wilde ◽  
Xiaoqi Li ◽  
Jill V. Hunter ◽  
Ponnada A. Narayana ◽  
Khader Hasan ◽  
...  

2019 ◽  
Vol 36 (4) ◽  
pp. 576-588 ◽  
Author(s):  
Benoit Mouzon ◽  
Corbin Bachmeier ◽  
Joseph Ojo ◽  
Christopher Acker ◽  
Scott Ferguson ◽  
...  

2019 ◽  
Vol 36 (1) ◽  
pp. 152-164 ◽  
Author(s):  
Kara M. Wendel ◽  
Jeong Bin Lee ◽  
Bethann M. Affeldt ◽  
Mary Hamer ◽  
Indira S. Harahap-Carrillo ◽  
...  

Brain Injury ◽  
2018 ◽  
Vol 32 (10) ◽  
pp. 1255-1264 ◽  
Author(s):  
Sarah M. Jurick ◽  
Samantha N. Hoffman ◽  
Scott Sorg ◽  
Amber V. Keller ◽  
Nicole D. Evangelista ◽  
...  

Neurology ◽  
2019 ◽  
Vol 93 (14 Supplement 1) ◽  
pp. S26.2-S27
Author(s):  
Teena Shetty ◽  
Joseph Nguyen ◽  
Esther Kim ◽  
George Skulikidis ◽  
Matthew Garvey ◽  
...  

ObjectiveTo determine the utility of fractional amplitude of low frequency fluctuations (fALFF) during resting state fMRI (rs-fMRI) as an advanced neuroimaging biomarker for Mild Traumatic Brain Injury (mTBI).BackgroundmTBI is defined by a constellation of functional rather than structural deficits. As a measure of functional connectivity, fALFF has been implicated in long-term outcomes post-mTBI. It is unclear however, how longitudinal changes in fALFF may relate to the clinical presentation of mTBI.Design/Methods111 patients and 32 controls (15–50 years old) were enrolled acutely after mTBI and followed with up to 4 standardized serial assessments. Patients were enrolled at either Encounter 1 (E1), within 72 hours, or Encounter 2 (E2), 5–10 days post-injury, and returned for Encounter 3 (E3) at 15–29 days and Encounter 4 (E4) at 83–97 days. Each encounter included a clinical exam, neuropsychological assessment, as well as rs-fMRI imaging. fALFF was analyzed independently in 14 functional networks and, in grey and white matter as a function of symptom severity. Symptom severity scores (SSS) ranged from 0–132 as defined by the SCAT2 symptom evaluation.ResultsIn mTBI patients, fALFF scores across 5 functional brain networks (language, sensorimotor, visuospatial, higher-order visual, and posterior salience) differed between mTBI patients with low versus high SSS (SSS <5 and >30, respectively). Overall, greater SSS were indexed by reduced connectivity (p < 0.03, Bonferroni corrected). Further analysis also identified corresponding network pairs which were most predictive of increased SSS. White matter fALFF was not correlated with symptom severity, however, decreased grey matter fALFF was significantly correlated with greater SSS (r = −0.25, p = 0.002).ConclusionsGrey matter fALFF was correlated with mTBI symptom burden suggesting that patterns of neural connectivity relate directly to the clinical presentation of mTBI. Furthermore, differences in functional network connectivity as a function of SSS may reflect which networks are implicated in recovery of mTBI.


Brain Injury ◽  
2015 ◽  
Vol 29 (13-14) ◽  
pp. 1701-1710 ◽  
Author(s):  
Leen Van Beek ◽  
Jolijn Vanderauwera ◽  
Pol Ghesquière ◽  
Lieven Lagae ◽  
Bert De Smedt

2020 ◽  
Vol 37 (24) ◽  
pp. 2616-2623
Author(s):  
Mehrbod Mohammadian ◽  
Timo Roine ◽  
Jussi Hirvonen ◽  
Timo Kurki ◽  
Jussi P. Posti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document