Assessment of land management practices on soil erosion using SWAT model in a Tunisian semi-arid catchment

2019 ◽  
Vol 20 (2) ◽  
pp. 1129-1139 ◽  
Author(s):  
Manel Mosbahi ◽  
Sihem Benabdallah
Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 650
Author(s):  
Wakjira Takala Dibaba ◽  
Tamene Adugna Demissie ◽  
Konrad Miegel

Excessive soil loss and sediment yield in the highlands of Ethiopia are the primary factors that accelerate the decline of land productivity, water resources, operation and function of existing water infrastructure, as well as soil and water management practices. This study was conducted at Finchaa catchment in the Upper Blue Nile basin of Ethiopia to estimate the rate of soil erosion and sediment loss and prioritize the most sensitive sub-watersheds using the Soil and Water Assessment Tool (SWAT) model. The SWAT model was calibrated and validated using the observed streamflow and sediment data. The average annual sediment yield (SY) in Finchaa catchment for the period 1990–2015 was 36.47 ton ha−1 yr−1 with the annual yield varying from negligible to about 107.2 ton ha−1 yr−1. Five sub-basins which account for about 24.83% of the area were predicted to suffer severely from soil erosion risks, with SY in excess of 50 ton ha−1 yr−1. Only 15.05% of the area within the tolerable rate of loss (below 11 ton ha−1yr−1) was considered as the least prioritized areas for maintenance of crop production. Despite the reasonable reduction of sediment yields by the management scenarios, the reduction by contour farming, slope terracing, zero free grazing and reforestation were still above the tolerable soil loss. Vegetative contour strips and soil bund were significant in reducing SY below the tolerable soil loss, which is equivalent to 63.9% and 64.8% reduction, respectively. In general, effective and sustainable soil erosion management requires not only prioritizations of the erosion hotspots but also prioritizations of the most effective management practices. We believe that the results provided new and updated insights that enable a proactive approach to preserve the soil and reduce land degradation risks that could allow resource regeneration.


2016 ◽  
Vol 58 (5) ◽  
pp. 889-905 ◽  
Author(s):  
Ayele Almaw Fenta ◽  
Hiroshi Yasuda ◽  
Katsuyuki Shimizu ◽  
Nigussie Haregeweyn ◽  
Aklilu Negussie

2013 ◽  
Vol 29 (4) ◽  
pp. 597-606 ◽  
Author(s):  
O. Kairis ◽  
C. Karavitis ◽  
A. Kounalaki ◽  
L. Salvati ◽  
C. Kosmas

2018 ◽  
Vol 8 (2) ◽  
pp. 20
Author(s):  
Tesfaye Samuel Saguye

Land degradation is increasing in severity and extent in many parts of the world. Success in arresting land degradation entails an improved understanding of its causes, process, indicators and impacts. Various scientific methodologies have been employed to assess land degradation globally. However, the use of local community knowledge in elucidating the causes, process, indicators and effects of land degradation has seen little application by scientists and policy makers. Land degradation may be a physical process, but its underlying causes are firmly rooted in the socio-economic, political and cultural environment in which land users operate. Analyzing the root causes and effects of land degradation from local community knowledge, perception and adapting strategies perspective will provide information that is essential for designing and promoting sustainable land management practices. The main objective of this study was to analyze the perceptions of farmers’ on the impact of land degradation hazard on agricultural land productivity decline associated with soil erosion and fertility loss. The study used a multistage sampling procedure to select sample respondent households. The sample size of the study was 120 household heads and 226 farm plots managed by these farmers. The primary data of the study were collected by using semi-structured Interview, focus group discussions and field observation. Both descriptive statistics and econometric techniques were used for data analysis. Descriptive results show that 57percent of the respondents were perceived the severity and its consequence on agricultural land productivity. The following indicators of soil erosion and fertility loss were generally perceived and observed by farmers’ in the study area: gullies formations, soil accumulation around clumps of vegetation, soil deposits on gentle slopes, exposed roots, muddy water, sedimentation in streams and rivers, change in vegetation species, increased runoff, and reduced rooting depth. The direct human activities which were perceived to be causing land degradation in the study area include: deforestation and clearing of vegetation, overgrazing, steep slope cultivation and continuous cropping. The farmers’ possibility of perceiving the impact of land degradation hazard on agricultural land productivity was primarily determined by institutional, psychological, demographic and by bio-physical factors. Farmers who perceive their land as deteriorating and producing less than desired, tend to adopt improved land management practices. On the other hand, farmers who perceive their land to be fertile tend to have low adoption of conservation practices. In order to overcome this land degradation and its consequent effects, the study recommended a need for the government to enforce effective policies to control and prevent land degradation and these policies should be community inclusive /participatory founded up on indigenous and age-honored knowledge and tradition of farmers' natural resource management as well as introduced scientific practices.


2017 ◽  
Vol 60 (4) ◽  
pp. 1153-1170 ◽  
Author(s):  
Lili Wang ◽  
Dennis C. Flanagan ◽  
Keith A. Cherkauer

Abstract. . Nonpoint-source (NPS) pollutants, especially from agriculture, continue to be a primary source of waterquality degradation problems. Effective land management decisions at the field scale must be made to minimize nutrient losses that could pollute streams. Existing NPS models often cannot directly estimate the impacts of different land management practices or determine the effectiveness of combined best management practices (BMPs) in a distributed way at the farm scale. In many cases, they rely on application of the Universal Soil Loss Equation (USLE) or its improved versions, which represent fields in a lumped fashion and use empirical rather than process-based modeling methodologies. In this study, a coupled Water Erosion Prediction Project and Water Quality (WEPP-WQ) model was completed, updated, improved, and evaluated for simulation of hydrology, soil erosion, and water quality. The WEPP model is a well-established process-based model that simulates runoff and erosion processes from a hillslope. The water quality components are based on those of the Soil and Water Assessment Tool (SWAT). A single overland flow element (OFE) on a hillslope is used to represent a single soil and land use management. The WEPP-WQ model was tested by comparing simulated values from the coupled model with observed nutrient and sediment concentrations in surface runoff following storm events at experimental sites near Waterloo in northeastern Indiana and at the Throckmorton Purdue Agricultural Center in west central Indiana. Time series evaluation of the WEPP-WQ model was performed with observed nutrient and sediment losses from an experimental plot near Tifton, Georgia. The model performed quite well in simulating nutrient losses for single storm events, with R2 greater than 0.8, Nash-Sutcliffe efficiency (NSE) greater than 0.65, and percent bias (PBIAS) less than 31% for runoff, sediment, nitrate nitrogen, total nitrogen, soluble phosphorus, and total phosphorus losses. In predicting time series nutrient loss, the WEPP-WQ model simulated daily nitrate nitrogen losses adequately, with the ratio of the root mean square error to the standard deviation of measured data (RSR) less than 0.7, NSE greater than 0.55, and PBIAS within the range of ±40%. Comparisons between simulated soluble phosphorus, total phosphorus, and literature results were performed due to the absence of an available observational dataset. The WEPP-WQ model with a single OFE in this study provides a basic but important step for the development of WEPP-WQ models with multiple OFEs that can evaluate the effectiveness of BMPs Keywords: Modeling, Nitrogen, Phosphorus, Soil erosion, Water quality, WEPP.


Author(s):  
M’Hamed Boufala ◽  
Abdellah El Hmaidi ◽  
Ali Essahlaoui ◽  
Khalid Chadli ◽  
Abdelhadi El Ouali ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document