Soil nitrification and nitrogen mineralization responded non-linearly to the addition of wood biochar produced under different pyrolysis temperatures

Author(s):  
Ashrafun Nessa ◽  
Shahla Hosseini Bai ◽  
Dianjie Wang ◽  
Zakaria Karim ◽  
Negar Omidvar ◽  
...  
2018 ◽  
Vol 13 (1) ◽  
pp. 23
Author(s):  
Rosileyde Golçalves Siqueira Cardoso ◽  
Adriene Woods Pedrosa ◽  
Mateus Cupertino Rodrigues ◽  
Ricardo Henrique Silva Santos ◽  
Paulo Roberto Cecon ◽  
...  

The knowledge about the rate of decomposition and nitrogen mineralization of green manures provides synchronization with the higher absorption stage by the coffee tree. The rate of decomposition and nitrogen mineralization varies according to the species of green manure and with the environmental factors. The aim of the present study was to evaluate the decomposition and nitrogen mineralization of two green manures intercropped with coffee trees for three different periods. The experiment was divided into two designs for statistical analysis, one referring to the characterization of plant material (fresh mass, dry matter, dry matter content, nitrogen concentration and accumulation in the jack bean (Canavalia ensiformis) and hyacinth bean (Dolichos lablab) and another to evaluate the rate of decomposition and N mineralization of these species. The decomposition rate decreased in both species as their growth time increased in the field. The decomposition was influenced by the phenology of green manures. Nitrogen mineralization of the jack bean decreased as the growth period in the field increased and was faster than hyacinth bean only when cut at 60 days. The N mineralization was slower than mass decomposition in both species.


2004 ◽  
Vol 68 (2) ◽  
pp. 489 ◽  
Author(s):  
R. L. Haney ◽  
A. J. Franzluebbers ◽  
E. B. Porter ◽  
F. M. Hons ◽  
D. A. Zuberer

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Laibin Huang ◽  
Seemanti Chakrabarti ◽  
Jennifer Cooper ◽  
Ana Perez ◽  
Sophia M. John ◽  
...  

AbstractNitrification is a central process in the global nitrogen cycle, carried out by a complex network of ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), complete ammonia-oxidizing (comammox) bacteria, and nitrite-oxidizing bacteria (NOB). Nitrification is responsible for significant nitrogen leaching and N2O emissions and thought to impede plant nitrogen use efficiency in agricultural systems. However, the actual contribution of each nitrifier group to net rates and N2O emissions remain poorly understood. We hypothesized that highly fertile agricultural soils with high organic matter mineralization rates could allow a detailed characterization of N cycling in these soils. Using a combination of molecular and activity measurements, we show that in a mixed AOA, AOB, and comammox community, AOA outnumbered low diversity assemblages of AOB and comammox 50- to 430-fold, and strongly dominated net nitrification activities with low N2O yields between 0.18 and 0.41 ng N2O–N per µg NOx–N in cropped, fallow, as well as native soil. Nitrification rates were not significantly different in plant-covered and fallow plots. Mass balance calculations indicated that plants relied heavily on nitrate, and not ammonium as primary nitrogen source in these soils. Together, these results imply AOA as integral part of the nitrogen cycle in a highly fertile agricultural soil.


CATENA ◽  
2021 ◽  
Vol 203 ◽  
pp. 105352
Author(s):  
Qianqian Zuo ◽  
Shaojun Wang ◽  
Ping Wang ◽  
Qianbin Cao ◽  
Shuang Zhao ◽  
...  

2000 ◽  
Vol 32 (10) ◽  
pp. 1345-1352 ◽  
Author(s):  
Joann K. Whalen ◽  
Peter J. Bottomley ◽  
David D. Myrold

Author(s):  
Christopher Daniel Burt ◽  
Taylor Chapman ◽  
Dave Bachoon ◽  
Miguel L Cabrera ◽  
Christopher Horacek

Sign in / Sign up

Export Citation Format

Share Document