scholarly journals Erratum to: The fungal endophyte Epichloë gansuensis increases NaCl-tolerance in Achnatherum inebrians through enhancing the activity of plasma membrane H+-ATPase and glucose-6-phosphate dehydrogenase

Author(s):  
Jianfeng Wang ◽  
Wenpeng Hou ◽  
Michael J. Christensen ◽  
Chao Xia ◽  
Tao Chen ◽  
...  
1980 ◽  
Vol 186 (2) ◽  
pp. 571-579 ◽  
Author(s):  
G L Francis ◽  
F J Ballard

1. The inactivation of cytosol enzymes in liver extracts was carried out by several subcellular fractions, with plasma membranes having the highest specific activity. Rough and smooth microsomal fractions were both active, whereas lysosmal inactivation capacity appeared to be derived entirely from contaminating plasma-membrane fragments. 2. Inactivation capacity in liver fractions was derived from parenchymal cells. Of the non-liver cells tested, plasma membranes from H35 hepatoma cells were able to inactivate glucose 6-phosphate dehydrogenase (EC 1.1.1.49), adipocyte “ghosts” showed slight activity and erythrocyte and reticulocyte “ghosts” were inactive. 3. Liposomes prepared from pure lipids with net negative, positive or neutral charge did not possess inactivation capacity. 4. Liver plasma-membrane inactivation capacity was destroyed by heating at 50 degrees C. 5. Inactivation factor solubilized from membranes by trypsin plus Triton X-100 treatment was partially purified by (NH4)2SO4 fractionation, gel filtration, ion-exchange chromatography and hydroxyapatite chromatography. 6. Partially purified inactivation factor analysed by gel electrophoresis gave a major protein band that co-migrated with capacity for inactivation of glucose 6-phosphate dehydrogenase. 7. It is concluded that inactivation factor is a membrane protein whose intracellular distribution and other properties are consistent with a possible role for this activity in the initial step of protein degradation.


1993 ◽  
Vol 291 (2) ◽  
pp. 515-522 ◽  
Author(s):  
K C Pedley ◽  
G E Jones ◽  
M Magnani ◽  
R J Rist ◽  
R J Naftalin

1. Fluorescence imaging of antibodies was used to show that phorbol 12-myristate 13-acetate (PMA) induces a 4-fold increase in the amount of hexokinase relative to the control in the cortical shell of rat peritoneal macrophage cytosol adjacent to the plasma membrane, and a corresponding depletion in the amount of hexokinase in the central core of the cytosol. However, there was no significant PMA-dependent change in the distribution of glucose-6-phosphate dehydrogenase. 2. Cytochalasin D, an inhibitor of actin microfilament polymerization, prevented the PMA-induced hexokinase translocation and also reduced the PMA-dependent increases in 2-deoxy-D-glucose transport and glucose-dependent PMA-stimulated superoxide production. 3. PMA caused a contraction of the width of the cortical F-actin zone. Cytochalasin D caused some dispersal of F-actin within the cell, increasing the density of F-actin within the central cytosolic core and causing aggregation of the F-actin within the cortex. These data are consistent with the view that PMA induces attachment of hexokinase to microfilaments within the cortical zone adjacent to the cell membrane of macrophages, and cytochalasin D prevents this attachment. This is the first direct demonstration of the translocation of hexokinase to the plasma membrane in activated cells, and supports the view that enhanced hexokinase activity in the cortical region of the cytosol is an important early component of the macrophage activation process.


Author(s):  
E. Keyhani

The matrix of biological membranes consists of a lipid bilayer into which proteins or protein aggregates are intercalated. Freeze-fracture techni- ques permit these proteins, perhaps in association with lipids, to be visualized in the hydrophobic regions of the membrane. Thus, numerous intramembrane particles (IMP) have been found on the fracture faces of membranes from a wide variety of cells (1-3). A recognized property of IMP is their tendency to form aggregates in response to changes in experi- mental conditions (4,5), perhaps as a result of translational diffusion through the viscous plane of the membrane. The purpose of this communica- tion is to describe the distribution and size of IMP in the plasma membrane of yeast (Candida utilis).Yeast cells (ATCC 8205) were grown in synthetic medium (6), and then harvested after 16 hours of culture, and washed twice in distilled water. Cell pellets were suspended in growth medium supplemented with 30% glycerol and incubated for 30 minutes at 0°C, centrifuged, and prepared for freeze-fracture, as described earlier (2,3).


Author(s):  
Hilton H. Mollenhauer ◽  
W. Evans

The pellicular structure of Euglena gracilis consists of a series of relatively rigid strips (Fig. 1) composed of ridges and grooves which are helically oriented along the cell and which fuse together into a common junction at either end of the cell. The strips are predominantly protein and consist in part of a series of fibers about 50 Å in diameter spaced about 85 Å apart and with a secondary periodicity of about 450 Å. Microtubules are also present below each strip (Fig. 1) and are often considered as part of the pellicular complex. In addition, there may be another fibrous component near the base of the pellicle which has not yet been very well defined.The pellicular complex lies underneath the plasma membrane and entirely within the cell (Fig. 1). Each strip of the complex forms an overlapping junction with the adjacent strip along one side of each groove (Fig. 1), in such a way that a certain amount of sideways movement is possible between one strip and the next.


Author(s):  
G. I. Kaye ◽  
J. D. Cole

For a number of years we have used an adaptation of Komnick's KSb(OH)6-OsO4 fixation method for the localization of sodium in tissues in order to study transporting epithelia under a number of different conditions. We have shown that in actively transporting rabbit gallbladder epithelium, large quantities of NaSb(OH)6 precipitate are found in the distended intercellular compartment, while localization of precipitate is confined to the inner side of the lateral plasma membrane in inactive gallbladder epithelium. A similar pattern of distribution of precipitate has been demonstrated in human and rabbit colon in active and inactive states and in the inactive colonic epithelium of hibernating frogs.


Sign in / Sign up

Export Citation Format

Share Document