Joint statistical-dynamical approach to decadal prediction of East Asian surface air temperature

2014 ◽  
Vol 57 (12) ◽  
pp. 3062-3072 ◽  
Author(s):  
FeiFei Luo ◽  
ShuangLin Li
Author(s):  
Jianping Li ◽  
Tiejun Xie ◽  
Xinxin Tang ◽  
Hao Wang ◽  
Cheng Sun ◽  
...  

AbstractIn this paper, we investigate the influence of the winter NAO on the multidecadal variability of winter East Asian surface air temperature (EASAT) and EASAT decadal prediction. The observational analysis shows that the winter EASAT and East Asian minimum SAT (EAmSAT) display strong in-phase fluctuations and a significant 60–80-year multidecadal variability, apart from a long-term warming trend. The winter EASAT experienced a decreasing trend in the last two decades, which is consistent with the occurrence of extremely cold events in East Asia winters in recent years. The winter NAO leads the detrended winter EASAT by 12–18 years with the greatest significant positive correlation at the lead time of 15 years. Further analysis shows that ENSO may affect winter EASAT interannual variability, but does not affect the robust lead relationship between the winter NAO and EASAT. We present the coupled oceanic-atmospheric bridge (COAB) mechanism of the NAO influences on winter EASAT multidecadal variability through its accumulated delayed effect of ∼15 years on the Atlantic Multidecadal Oscillation (AMO) and Africa-Asia multidecadal teleconnection (AAMT) pattern. An NAO-based linear model for predicting winter decadal EASAT is constructed on the principle of the COAB mechanism, with good hindcast performance. The winter EASAT for 2020–34 is predicted to keep on fluctuating downward until ∼2025, implying a high probability of occurrence of extremely cold events in coming winters in East Asia, followed by a sudden turn towards sharp warming. The predicted 2020/21 winter EASAT is almost the same as the 2019/20 winter.


2019 ◽  
Vol 19 (15) ◽  
pp. 9903-9911
Author(s):  
Xin Hao ◽  
Shengping He ◽  
Huijun Wang ◽  
Tingting Han

Abstract. The East Asian winter monsoon (EAWM) is greatly influenced by many factors that can be classified as anthropogenic forcing and natural forcing. Here we explore the contribution of anthropogenic influence to the change in the EAWM over the past decades. Under all forcings observed during 1960–2013 (All-Hist run), the atmospheric general circulation model is able to reproduce the climatology and variability of the EAWM-related surface air temperature and 500 hPa geopotential height and shows a statistically significant decreasing EAWM intensity with a trend coefficient of ∼-0.04 yr−1, which is close to the observed trend. By contrast, the simulation, which is driven by the same forcing as the All-Hist run but with the anthropogenic contribution to them removed, shows no decreasing trend in the EAWM intensity. By comparing the simulations under two different forcing scenarios, we further reveal that the responses of the EAWM to the anthropogenic forcing include a rise of 0.6∘ in surface air temperature over East Asia as well as weakening of the East Asian trough, which may result from the poleward expansion and intensification of the East Asian jet forced by the change in temperature gradient in the troposphere. Additionally, compared with the simulation without anthropogenic forcing, the frequency of strong (weak) EAWM occurrence is reduced (increased) by 45 % (from 0 to 10/7). These results indicate that the weakening of the EAWM during 1960–2013 may be mainly attributed to the anthropogenic influence.


2019 ◽  
Author(s):  
Xin Hao ◽  
Shengping He ◽  
Huijun Wang ◽  
Tingting Han

Abstract. The East Asian winter monsoon (EAWM) can be greatly influenced by many factors that can be classified as anthropogenic forcing and natural forcing. Here we explore the contribution of anthropogenic influence to the change in the EAWM over the past decades. Under all forcings observed during 1960–2013 (All-Hist run), the atmospheric general circulation model is able to reproduce the climatology and variability of the EAWM-related surface air temperature and 500 hPa geopotential height, and shows a statistically significant decreasing EAWM intensity with a trend coefficient of ∼−0.04 yr−1 which is close to the observed trend. By contrast, the simulation, which is driven by the same forcing as All-Hist run but with the anthropogenic contribution to them removed, shows no decreasing trend in the EAWM intensity. By comparing the simulations under two different forcing scenarios, we further reveal that the responses of the EAWM to the anthropogenic forcing include a rise of 0.6 ° in surface air temperature over the East Asia as well as weakening of the East Asia trough, which may result from the poleward expansion and intensification of the East Asian jet forced by the change of temperature gradient in the troposphere. Additionally, compared with the simulation without anthropogenic forcing, the frequency of strong (weak) EAWM occurrence is reduced (increased) by 45 % (from 0 to 10/7). These results indicate that the weakening of the EAWM during 1960–2013 may be mainly attributed to the anthropogenic influence.


2012 ◽  
Vol 8 (4) ◽  
pp. 3251-3276 ◽  
Author(s):  
W. Zheng ◽  
B. Wu ◽  
J. He ◽  
Y. Yu

Abstract. Ten Coupled General Circulation Models (CGCMs) participating the third phase of Paleoclimate Modeling Intercomparison project (PMIP3) are assessed for the simulations of East Asian Summer Monsoon (EASM) at both the present climate and mid-Holocene. Results show that the PMIP3 model median well captures the characteristics of the EASM, including the two distinct features of the Meiyu Front and the stepwise meridional displacement of the monsoon rainbelt. At mid-Holocene, the enhanced EASM is simulated by the PMIP3 models. The model median shows that the changes of surface air temperature and precipitation are within the range as indicated by the proxy data over the eastern China. Both the changes of monsoonal circulation and the water vapor content favor the increasing of summer precipitation. Regional features can be identified between models because of their different simulations of the above changes. The model spread for the surface air temperature (TAS) is relatively smaller when compared with that of PMIP2 models in both the Northern Hemisphere and the eastern China. However, the model spread of summer precipitation is larger among PMIP3 models, particularly in the lower reaches of Yangzi River. The TAS over Tibetan Plateau has a positive relationship with the precipitation in the lower reaches of Yangzi River, yet this relationship does not apply for those PMIP3 models in which the monsoonal precipitation is more sensitive to the changes of large-scale circulation.


Sign in / Sign up

Export Citation Format

Share Document