Formulation of a new ocean salinity boundary condition and impact on the simulated climate of an oceanic general circulation model

2017 ◽  
Vol 60 (3) ◽  
pp. 491-500 ◽  
Author(s):  
JiangBo Jin ◽  
QingCun Zeng ◽  
Lin Wu ◽  
HaiLong Liu ◽  
MingHua Zhang
2000 ◽  
Vol 53 (1) ◽  
pp. 98-104 ◽  
Author(s):  
Paul G. Myers ◽  
Eelco J. Rohling

AbstractAn oceanic general circulation model, previously used to simulate the conditions associated with the Holocene Sapropel S1, is used to simulate the effects of a climate deterioration (represented as a cooling event) on the sapropelic circulation mode. The enhanced cooling (2°–3°C) induces deep convection in the Adriatic and the Gulf of Lions and intermediate water formation in the Aegean, where in all cases there had previously been only stagnant unventilated waters. The depths of ventilation (to ∼1250 m) are in agreement with core data from this period. The short decadal timescales involved in modifying the sapropelic circulation suggest that such a climatic deterioration may be associated with the interruption of S1 between 7100 and 6900 14C yr B.P., which divided the sapropel into two subunits.


2014 ◽  
Vol 7 (6) ◽  
pp. 7575-7617 ◽  
Author(s):  
A. Molod ◽  
L. Takacs ◽  
M. Suarez ◽  
J. Bacmeister

Abstract. The Modern-Era Retrospective Analysis for Research and Applications-2 (MERRA2) version of the GEOS-5 Atmospheric General Circulation Model (AGCM) is currently in use in the NASA Global Modeling and Assimilation Office (GMAO) at a wide range of resolutions for a variety of applications. Details of the changes in parameterizations subsequent to the version in the original MERRA reanalysis are presented here. Results of a series of atmosphere-only sensitivity studies are shown to demonstrate changes in simulated climate associated with specific changes in physical parameterizations, and the impact of the newly implemented resolution-aware behavior on simulations at different resolutions is demonstrated. The GEOS-5 AGCM presented here is the model used as part of the GMAO's MERRA2 reanalysis, the global mesoscale "nature run", the real-time numerical weather prediction system, and for atmosphere-only, coupled ocean–atmosphere and coupled atmosphere–chemistry simulations. The seasonal mean climate of the MERRA2 version of the GEOS-5 AGCM represents a substantial improvement over the simulated climate of the MERRA version at all resolutions and for all applications. Fundamental improvements in simulated climate are associated with the increased re-evaporation of frozen precipitation and cloud condensate, resulting in a wetter atmosphere. Improvements in simulated climate are also shown to be attributable to changes in the background gravity wave drag, and to upgrades in the relationship between the ocean surface stress and the ocean roughness. The series of "resolution aware" parameters related to the moist physics were shown to result in improvements at higher resolutions, and result in AGCM simulations that exhibit seamless behavior across different resolutions and applications.


2017 ◽  
Vol 30 (11) ◽  
pp. 3963-3978 ◽  
Author(s):  
Xuyang Ge ◽  
Wanqiu Wang ◽  
Arun Kumar ◽  
Ying Zhang

Abstract In this paper, the influence of high vertical resolution near the surface in an oceanic general circulation model in simulating the observed sea surface temperature (SST) variability is investigated. In situ observations of vertical temperature profiles are first used to quantify temperature variability with depth near the ocean surface. The analysis shows that there is a sharp vertical temperature gradient within the top 10 m of the ocean. Both diurnal and intraseasonal variabilities of the ocean temperatures are largest near the surface and decrease with the ocean depth. Numerical experiments with an oceanic general circulation model are next carried out with 1- and 10-m vertical resolutions for the upper ocean to study the dependence of the simulated SST and vertical temperature structure on the vertical resolution. It is found that the simulated diurnal and intraseasonal variabilities, as well as the associated vertical temperature gradient near the surface, are strongly influenced by the oceanic vertical resolution, with the 1-m vertical resolution producing a stronger vertical temperature gradient and temporal variability than the 10-m vertical resolution. These results suggest that a realistic representation of SST variability with a high vertical resolution in the upper ocean is required for a coupled atmosphere–ocean model to correctly simulate the observed tropical intraseasonal oscillations, including the Madden–Julian oscillation and the boreal summer monsoon intraseasonal oscillation, which are strongly linked with the underlying SST.


2004 ◽  
Vol 21 (5) ◽  
pp. 675-690 ◽  
Author(s):  
Liu Hailong ◽  
Zhang Xuehong ◽  
Li Wei ◽  
Yu Yongqiang ◽  
Yu Rucong

Sign in / Sign up

Export Citation Format

Share Document