Effects of precipitation physics algorithms on a simulated climate in a general circulation model

2009 ◽  
Vol 71 (17-18) ◽  
pp. 1924-1934 ◽  
Author(s):  
Suryun Ham ◽  
Song-You Hong ◽  
Young-Hwa Byun ◽  
Jhoon Kim
2014 ◽  
Vol 7 (6) ◽  
pp. 7575-7617 ◽  
Author(s):  
A. Molod ◽  
L. Takacs ◽  
M. Suarez ◽  
J. Bacmeister

Abstract. The Modern-Era Retrospective Analysis for Research and Applications-2 (MERRA2) version of the GEOS-5 Atmospheric General Circulation Model (AGCM) is currently in use in the NASA Global Modeling and Assimilation Office (GMAO) at a wide range of resolutions for a variety of applications. Details of the changes in parameterizations subsequent to the version in the original MERRA reanalysis are presented here. Results of a series of atmosphere-only sensitivity studies are shown to demonstrate changes in simulated climate associated with specific changes in physical parameterizations, and the impact of the newly implemented resolution-aware behavior on simulations at different resolutions is demonstrated. The GEOS-5 AGCM presented here is the model used as part of the GMAO's MERRA2 reanalysis, the global mesoscale "nature run", the real-time numerical weather prediction system, and for atmosphere-only, coupled ocean–atmosphere and coupled atmosphere–chemistry simulations. The seasonal mean climate of the MERRA2 version of the GEOS-5 AGCM represents a substantial improvement over the simulated climate of the MERRA version at all resolutions and for all applications. Fundamental improvements in simulated climate are associated with the increased re-evaporation of frozen precipitation and cloud condensate, resulting in a wetter atmosphere. Improvements in simulated climate are also shown to be attributable to changes in the background gravity wave drag, and to upgrades in the relationship between the ocean surface stress and the ocean roughness. The series of "resolution aware" parameters related to the moist physics were shown to result in improvements at higher resolutions, and result in AGCM simulations that exhibit seamless behavior across different resolutions and applications.


1990 ◽  
Vol 3 (10) ◽  
pp. 1053-1079 ◽  
Author(s):  
Thomas R. Karl ◽  
Wei-Chyung Wang ◽  
Michael E. Schlesinger ◽  
Richard W. Knight ◽  
David Portman

2015 ◽  
Vol 8 (5) ◽  
pp. 1339-1356 ◽  
Author(s):  
A. Molod ◽  
L. Takacs ◽  
M. Suarez ◽  
J. Bacmeister

Abstract. The Modern-Era Retrospective Analysis for Research and Applications-2 (MERRA2) version of the Goddard Earth Observing System-5 (GEOS-5) atmospheric general circulation model (AGCM) is currently in use in the NASA Global Modeling and Assimilation Office (GMAO) at a wide range of resolutions for a variety of applications. Details of the changes in parameterizations subsequent to the version in the original MERRA reanalysis are presented here. Results of a series of atmosphere-only sensitivity studies are shown to demonstrate changes in simulated climate associated with specific changes in physical parameterizations, and the impact of the newly implemented resolution-aware behavior on simulations at different resolutions is demonstrated. The GEOS-5 AGCM presented here is the model used as part of the GMAO MERRA2 reanalysis, global mesoscale simulations at 10 km resolution through 1.5 km resolution, the real-time numerical weather prediction system, and for atmosphere-only, coupled ocean-atmosphere and coupled atmosphere-chemistry simulations. The seasonal mean climate of the MERRA2 version of the GEOS-5 AGCM represents a substantial improvement over the simulated climate of the MERRA version at all resolutions and for all applications. Fundamental improvements in simulated climate are associated with the increased re-evaporation of frozen precipitation and cloud condensate, resulting in a wetter atmosphere. Improvements in simulated climate are also shown to be attributable to changes in the background gravity wave drag, and to upgrades in the relationship between the ocean surface stress and the ocean roughness. The series of resolution-aware parameters related to the moist physics was shown to result in improvements at higher resolutions and result in AGCM simulations that exhibit seamless behavior across different resolutions and applications.


2014 ◽  
Vol 27 (15) ◽  
pp. 5786-5800 ◽  
Author(s):  
Gerhard Krinner ◽  
Chloé Largeron ◽  
Martin Ménégoz ◽  
Cécile Agosta ◽  
Claire Brutel-Vuilmet

Abstract A variable-resolution atmospheric general circulation model (AGCM) is used for climate change projections over the Antarctic. The present-day simulation uses prescribed observed sea surface conditions, while a set of five simulations for the end of the twenty-first century (2070–99) under the Special Report on Emissions Scenarios (SRES) A1B scenario uses sea surface condition anomalies from selected coupled ocean–atmosphere climate models from phase 3 of the Coupled Model Intercomparison Project (CMIP3). Analysis of the results shows that the prescribed sea surface condition anomalies have a very strong influence on the simulated climate change on the Antarctic continent, largely dominating the direct effect of the prescribed greenhouse gas concentration changes in the AGCM simulations. Complementary simulations with idealized forcings confirm these results. An analysis of circulation changes using self-organizing maps shows that the simulated climate change on regional scales is not principally caused by shifts of the frequencies of the dominant circulation patterns, except for precipitation changes in some coastal regions. The study illustrates that in some respects the use of bias-corrected sea surface boundary conditions in climate projections with a variable-resolution atmospheric general circulation model has some distinct advantages over the use of limited-area atmospheric circulation models directly forced by generally biased coupled climate model output.


Sign in / Sign up

Export Citation Format

Share Document