Spatial distribution of ion polytropic index joint-modulated by temperature anisotropy and MHD disturbances in the southern high latitude magnetosheath

2018 ◽  
Vol 61 (3) ◽  
pp. 381-388 ◽  
Author(s):  
XueXia Pang ◽  
JinBin Cao ◽  
ZeChao Deng ◽  
PengYing Jia
2006 ◽  
Vol 38 (11) ◽  
pp. 2374-2379 ◽  
Author(s):  
J.-K. Chung ◽  
Y.H. Kim ◽  
Y.-I. Won ◽  
B.K. Moon ◽  
T.H. Oh

2021 ◽  
Author(s):  
Lauri Holappa ◽  
Timo Asikainen ◽  
Kalevi Mursula

<p>The interaction of the solar wind with the Earth’s magnetic field produces geomagnetic activity, which is critically dependent on the orientation of the interplanetary magnetic field (IMF). Most solar wind coupling functions quantify this dependence on the IMF orientation with the so-called IMF clock angle in a way, which is symmetric with respect to the sign of the B<sub>y</sub> component. However, recent studies have shown that IMF B<sub>y</sub> is an additional, independent driver of high-latitude geomagnetic activity, leading to higher (weaker) geomagnetic activity in Northern Hemisphere (NH) winter for B<sub>y</sub> > 0 (B<sub>y</sub> < 0). For NH summer the dependence on the B<sub>y</sub> sign is reversed. We quantify the size of this explicit B<sub>y</sub>-effect with respect to the solar wind coupling function, both for northern and southern high-latitude geomagnetic activity. We show that for a given value of solar wind coupling function, geomagnetic activity is about 40% stronger for B<sub>y</sub> > 0 than for B<sub>y</sub> < 0 in NH winter. We also discuss recent advances in the physical understanding of the B<sub>y</sub>-effect. Our results highlight the importance of the IMF B<sub>y</sub>-component for space weather and must be taken into account in future space weather modeling.</p>


2009 ◽  
Vol 27 (10) ◽  
pp. 3923-3932 ◽  
Author(s):  
A. G. Wood ◽  
S. E. Pryse ◽  
J. Moen

Abstract. Results are presented from a multi-instrument study showing the influence of geomagnetic substorm activity on the spatial distribution of the high-latitude ionospheric plasma. Incoherent scatter radar and radio tomography measurements on 12 December 2001 were used to directly observe the remnants of polar patches in the nightside ionosphere and to investigate their characteristics. The patches occurred under conditions of IMF Bz negative and IMF By negative. They were attributed to dayside photoionisation transported by the high-latitude convection pattern across the polar cap and into the nighttime European sector. The patches on the nightside were separated by some 5° latitude during substorm expansion, but this was reduced to some 2° when the activity had subsided. The different patch separations resulted from the expansion and contraction of the high-latitude plasma convection pattern on the nightside in response to the substorm activity. The patches of larger separation occurred in the antisunward cross-polar flow as it entered the nightside sector. Those of smaller separation were also in antisunward flow, but close to the equatorward edge of the convection pattern, in the slower, diverging flow at the Harang discontinuity. A patch repetition time of some 10 to 30 min was estimated depending on the phase of the substorm.


1968 ◽  
Vol 46 (10) ◽  
pp. S809-S811 ◽  
Author(s):  
L. I. Dorman ◽  
S. Fischer

Employing the data from cosmic-ray neutron monitors at high latitude, the spatial distribution of the axis of the diurnal anisotropy is determined. The effects of the earth's revolution around the sun on the diurnal intensity variation is investigated. A new method for further investigation of the spatial distribution of the anisotropy and for the determination of its spectra in various directions has been proposed.


Sign in / Sign up

Export Citation Format

Share Document