substorm activity
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 12)

H-INDEX

21
(FIVE YEARS 0)

2021 ◽  
Vol 11 (12) ◽  
pp. 5680
Author(s):  
Francesco Palma ◽  
Alessandro Sotgiu ◽  
Alexandra Parmentier ◽  
Matteo Martucci ◽  
Mirko Piersanti ◽  
...  

On 25 August 2018, a G3-class geomagnetic storm reached the Earth’s magnetosphere, causing a transient rearrangement of the charged particle environment around the planet, which was detected by the High-Energy Particle Detector (HEPD) on board the China Seismo-Electromagnetic Satellite (CSES-01). We found that the count rates of electrons in the MeV range were characterized by a depletion during the storm’s main phase and a clear enhancement during the recovery caused by large substorm activity, with the key role played by auroral processes mapped into the outer belt. A post-storm rate increase was localized at L-shells immediately above ∼3 and mostly driven by non-adiabatic local acceleration caused by possible resonant interaction with low-frequency magnetospheric waves.



2021 ◽  
Vol 39 (3) ◽  
pp. 461-470
Author(s):  
Haimeng Li ◽  
Wen Li ◽  
Qianli Ma ◽  
Yukitoshi Nishimura ◽  
Zhigang Yuan ◽  
...  

Abstract. We report an attenuation of hiss wave intensity in the duskside of the outer plasmasphere in response to enhanced convection and a substorm based on Van Allen Probe observations. Using test particle codes, we simulate the dynamics of energetic electron fluxes based on a realistic magnetospheric electric field model driven by solar wind and subauroral polarization stream. We suggest that the enhanced magnetospheric electric field causes the outward and sunward motion of energetic electrons, corresponding to the decrease of energetic electron fluxes on the duskside, leading to the subsequent attenuation of hiss wave intensity. The results indicate that the enhanced electric field can significantly change the energetic electron distributions, which provide free energy for hiss wave amplification. This new finding is critical for understanding the generation of plasmaspheric hiss and its response to solar wind and substorm activity.



2021 ◽  
Author(s):  
Afroditi Nasi ◽  
Ioannis A. Daglis ◽  
Christos Katsavrias ◽  
Ingmar Sandberg ◽  
Wen Li ◽  
...  

<p>During the second half of 2019, a sequence of solar wind high-speed streams (V<sub>SW</sub> ≥ 600 km/s)  impacted the magnetosphere, resulting in a series of recurrent, relatively weak, geomagnetic storms (Dst<sub>min</sub> ≥ - 80 nT). During one of these storms, a longer-lasting solar wind pressure pulse and intense substorm activity were also recorded (AL ≤ - 1600 nT on August 31 and September 1).</p><p>We use particle measurements from the Van Allen Probes, Arase and Galileo 207, 215 satellites, to investigate this event; all spacecraft observed a significant enhancement of relativistic electron fluxes. We also use ULF and chorus wave measurements, as well as interplanetary parameters, for a detailed investigation of this event and of the acceleration mechanisms involved.</p><p>This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 870437 for the SafeSpace project.</p>



2021 ◽  
Author(s):  
Elena Zhukova ◽  
Victor Popov ◽  
Helmi Malova ◽  
Lev Zelenyi

<p><span>The mechanisms of particle acceleration in the CS of the Mercury magnetosphere were investigated. The numerical model is developed that allows evaluating the acceleration of ions H<sup>+</sup>, He<sup>+</sup>, O<sup>+</sup> in two possible mechanisms of particle acceleration: (1) by multiple dipolarizations during substorm activity passage of fronts; (2) by the turbulent electromagnetic field in the magnetosphere. Our simulation show that all kinds of charged plasma particles can be efficiently accelerated during multiple dipolarizations processes of the type (2) to maximum energies about 100-200keV. The gain of energies of ions under the (2) process of magnetospheric perturbations is about 10% higher than in the second case. The shapes of obtained in the model energy spectra were shown to be in agreement with experimental spectra. </span><span>We conclude that the </span><span>role of these mechanisms is more important near Mercury</span> <span>in comparison with plasma processes in the Earth’s magnetosphere</span><span>.</span></p>



2021 ◽  
Author(s):  
Yangfan He ◽  
Hui Wang ◽  
Lühr Hermann ◽  
Kistler Lynn ◽  
Saikin Anthony ◽  
...  

<p>The temporal and spatial evolution of electromagnetic ion cyclotron (EMIC) waves during<br>the magnetic storm of 21–29 June 2015 was investigated using high-resolution magnetic field observations<br>from Swarm constellation in the ionosphere and Van Allen Probes in the magnetosphere. Magnetospheric<br>EMIC waves had a maximum occurrence frequency in the afternoon sector and shifted equatorward during<br>the expansion phase and poleward during the recovery phase. However, ionospheric waves in subauroral<br>regions occurred more frequently in the nighttime than during the day and exhibited less obvious<br>latitudinal movements. During the main phase, dayside EMIC waves occurred in both the ionosphere<br>and magnetosphere in response to the dramatic increase in the solar wind dynamic pressure. Waves were<br>absent in the magnetosphere and ionosphere around the minimum SYM-H. During the early recovery<br>phase, He<sup>+ </sup>band EMIC waves were observed in the ionosphere and magnetosphere. During the late<br>recovery phase, H<sup>+</sup> band EMIC waves emerged in response to enhanced earthward convection during<br>substorms in the premidnight sector. The occurrence of EMIC waves in the noon sector was affected by<br>the intensity of substorm activity. Both ionospheric wave frequency and power were higher in the summer<br>hemisphere than in the winter hemisphere. Waves were confined to an MLT interval of less than 5 hr with a<br>duration of less than 186 min from coordinated observations. The results could provide additional insights<br>into the spatial characteristics and propagation features of EMIC waves during storm periods</p>



2021 ◽  
Author(s):  
Masatoshi Yamauchi ◽  
Magnar Johnsen ◽  
Shin-Ichi Othani ◽  
Dmitry Sormakov

<p>Solar flares are known to enhance the ionospheric electron density and thus influence the electric currents in the D- and E-region.  The geomagnetic disturbance caused by this current system is called a "crochet" or "SFE (solar flare effect)".  Crochets are observed at dayside low-latitudes with a peak near the subsolar region ("subsolar crochet"), in the nightside high-latitude auroral region with a peak where the geomagnetic disturbance pre-exists during solar illumination ("auroral crochet"), and in the cusp ("cusp crochet").  In addition, we recently found a new type of crochet on the dayside ionospheric current at high latitudes (European sector 70-75 geographic latitude/67-72 geomagnetic latitude) independent from the other crochets.  The new crochet is much more intense and longer in duration than the subsolar crochet and is detected even in AU index for about half the >X2 flares despite the unfavorable latitudinal coverage of the AE stations (~65 geomagnetic latitude) to detect this new crochet (Yamauchi et al., 2020).  </p><p>The signature is sometime s seen in AL, causing the crochet signature convoluting with substorms.  From a theoretical viewpoint, X-flares that enhances the ionospheric conductivity may influence the substorm activity, like the auroral crochet.  To understand the substorm-crochet relation in the dayside, we examined SuperMAG data for cases when the onset of the substorm-like AL (SML) behavior coincides with the crochet.  We commonly found a large counter-clockwise ∆B vortex centered at 13-15 LT, causing an AU peak during late afternoon and an AL peak near noon at higher latitudes than the high-latitude crochet.  In addition, we could recognize a clockwise ∆B vortex in the prenoon sector, causing another poleward ∆B, but this signature is not as clear as the afternoon vortex.  With such strong vortex features, it becomes similar to substorms except for its local time.  In some cases, the vortex expends to the nightside sector, where and when nightside onset starts, suggesting triggering of onset.  Thus, the crochet may behave like pseudo-onset at different latitude than midnight substorms, and may even trigger substorm onset.</p>



2021 ◽  
Author(s):  
Haimeng Li ◽  
Wen Li ◽  
Qianli Ma ◽  
Yukitoshi Nishimura ◽  
Zhigang Yuan ◽  
...  

Abstract. We report an attenuation of hiss wave intensity in the duskside of outer plasmasphere in response to enhanced convection and substorm based on Van Allen Probes observations. Using test particle codes, we simulate the dynamics of energetic electron fluxes based on a realistic magnetospheric electric field model driven by solar wind and subauroral polarization stream. We suggest that the enhanced magnetospheric electric field causes the outward and sunward motion of energetic electrons, corresponding to the decrease of energetic electron fluxes on the duskside, leading to the subsequent attenuation of hiss wave intensity. The results indicate that the enhanced electric field can significantly change the energetic electron distributions, which provide free energy for hiss wave amplification. This new finding is critical for understanding the generation of plasmaspheric hiss and its response to solar wind and substorm activity.





2021 ◽  
Vol 39 (1) ◽  
pp. 69-83
Author(s):  
Noora Partamies ◽  
Fasil Tesema ◽  
Emma Bland ◽  
Erkka Heino ◽  
Hilde Nesse Tyssøy ◽  
...  

Abstract. A set of 24 isolated, 46 compound, and 36 multi-night substorm events from the years 2008–2013 have been analysed in this study. Isolated substorm events are defined as single expansion–recovery phase pairs, compound substorms consist of multiple phase pairs, and multi-night substorm events refer to recurring substorm activity on consecutive nights. Approximately 200 nights of substorm activity observed over Fennoscandian Lapland have been analysed for their magnetic disturbance magnitude and the level of cosmic radio noise absorption. Substorm events were automatically detected from the local electrojet index data and visually categorized. We show that isolated substorms have limited lifetimes and spatial extents as compared to the other substorm types. The average intensity (both in absorption and ground-magnetic deflection) of compound and multi-night substorm events is similar. For multi-night substorm events, the first night is rarely associated with the strongest absorption. Instead, the high-energy electron population needed to cause the strongest absorption builds up over 1–2 additional nights of substorm activity. The non-linear relationship between the absorption and the magnetic deflection at high- and low-activity conditions is also discussed. We further collect in situ particle spectra for expansion and recovery phases to construct median precipitation fluxes at energies from 30 eV up to about 800 keV. In the expansion phases the bulk of the spectra show a local maximum flux in the range of a few keV to 10 keV, while in the recovery phases higher fluxes are seen in the range of tens of keV to hundreds of keV. These findings are discussed in the light of earlier observations of substorm precipitation and their atmospheric effects.



2021 ◽  
Vol 254 ◽  
pp. 01004
Author(s):  
Veneta Guineva ◽  
Irina Despirak ◽  
Rolf Werner ◽  
Rumiana Bojilova ◽  
Lyubomira Raykova

The goal of this work is to examine the effects of the “expanded” or “high-latitude” substorms at mid-latitudes. These substorms are generated at auroral latitudes and propagate up to geomagnetic latitudes above ∼70° GMLat. They are usually observed during reccurent high-speed streams (HSS) from coronal holes. To identify the substorm activity, data from the networks IMAGE, SuperMAG and INTERMAGNET, and data from the all-sky cameras in Lovozero were used. To verify the interplanetary and geomagnetic conditions, data from the CDAWeb OMNI and from the WDC for geomagnetism at Kyoto were taken. We analyzed one substorm event on 20 February 2017 at ∼18:40 UT, it developed during HSS, in non-storm conditions. Some features of mid-latitude positive bays (MPB) at the European and Asian stations, and in particular at the Scandinavian meridian have been studied: the bay sign conversion from negative to positive values, the longitudinal and latitudinal extent of the MPB. The central meridian of the substorm was determined.



Sign in / Sign up

Export Citation Format

Share Document