Output feedback stabilization for power-integrator systems with unknown measurement sensitivity

2020 ◽  
Vol 64 (9) ◽  
Author(s):  
Yu Shao ◽  
Zong-Yao Sun ◽  
Xue-Jun Xie ◽  
Zhen-Guo Liu
2006 ◽  
Vol 11 (2) ◽  
pp. 137-148 ◽  
Author(s):  
A. Benabdallah ◽  
M. A. Hammami

In this paper, we address the problem of output feedback stabilization for a class of uncertain dynamical systems. An asymptotically stabilizing controller is proposed under the assumption that the nominal system is absolutely stable.


2017 ◽  
Vol 40 (7) ◽  
pp. 2408-2415 ◽  
Author(s):  
Liang Liu ◽  
Shengyuan Xu ◽  
Xuejun Xie ◽  
Bing Xiao

Based on stochastic time-delay system stability criterion and a homogeneous domination approach, the output-feedback stabilization problem for a class of more general stochastic upper-triangular systems with state and input time-delays has been solved in this paper. Firstly, the initial system is changed into an equivalent one with a designed scalar by introducing a set of coordinate transformations. After that, by designing an implementable homogeneous reduced-order observer, and tactfully selecting a suitable Lyapunov–Krasoviskii functional and a low gain scale, a delay-independent output-feedback controller is explicitly constructed. Finally, the globally asymptotically stability in probability of the closed-loop system is ensured by rigorous proof. The simulation results demonstrate the efficiency of the proposed design scheme.


Sign in / Sign up

Export Citation Format

Share Document