A mass-conservative average flow model based on finite element method for complex textured surfaces

2013 ◽  
Vol 56 (10) ◽  
pp. 1909-1919 ◽  
Author(s):  
Yi Xie ◽  
YongJian Li ◽  
ShuangFu Suo ◽  
XiangFeng Liu ◽  
JingHao Li ◽  
...  
1997 ◽  
Vol 119 (3) ◽  
pp. 549-555 ◽  
Author(s):  
L. Lunde ◽  
K. To̸nder

The lubrication of isotropic rough surfaces has been studied numerically, and the flow factors given in the so-called Average Flow Model have been calculated. Both pressure flow and shear flow are considered. The flow factors are calculated from a small hearing part, and it is shown that the flow in the interior of this subarea is nearly unaffected by the bearing part’s boundary conditions. The surface roughness is generated numerically, and the Reynolds equation is solved by the finite element method. The method used for calculating the flow factors can be used for different roughness patterns.


1988 ◽  
Vol 7 (4) ◽  
pp. 174-183
Author(s):  
G. J. Van Tonder ◽  
J. F. Botha

The present investigation is mostly concerned with the contribution that the finite-element method can make towards the simulation of ground water flow. After a brief introduction to the finite element method, it is applied to the Grootfontein dolomitic aquifer near Mafikeng/Mmabatho. This aquifer yields water for irrigation purposes as well as water for the township. By utilizing the available information a good flow model was constructed for this aquifer. The model is considered calibrated and verificated.


2010 ◽  
Vol 4 (7) ◽  
pp. 569 ◽  
Author(s):  
B. Ganji ◽  
J. Faiz ◽  
K. Kasper ◽  
C.E. Carstensen ◽  
R.W. De Doncker

Sign in / Sign up

Export Citation Format

Share Document