Numerical investigation of plane Couette flow with weak spanwise rotation

Author(s):  
YuHan Huang ◽  
ZhenHua Xia ◽  
MinPing Wan ◽  
YiPeng Shi ◽  
ShiYi Chen
2021 ◽  
Vol 931 ◽  
Author(s):  
Yabiao Zhu ◽  
Jiaxing Song ◽  
Fenghui Lin ◽  
Nansheng Liu ◽  
Xiyun Lu ◽  
...  

Direct numerical simulation of spanwise-rotation-driven flow transitions in viscoelastic plane Couette flow from a drag-reduced inertial to a drag-enhanced elasto-inertial turbulent flow state followed by full relaminarization is reported for the first time. Specifically, this novel flow transition begins with a drag-reduced inertial turbulent flow state at a low rotation number $0\leqslant Ro \leqslant 0.1$ , and then transitions to a rotation/polymer-additive-driven drag-enhanced inertial turbulent regime, $0.1\leqslant Ro \leqslant 0.3$ . In turn, the flow transitions to a drag-enhanced elasto-inertial turbulent state, $0.3\leqslant Ro \leqslant 0.9$ , and eventually relaminarizes at $Ro=1$ . In addition, two novel rotation-dependent drag enhancement mechanisms are proposed and substantiated. (1) The formation of large-scale roll cells results in enhanced convective momentum transport along with significant polymer elongation and stress generated in the extensionally dominated flow between adjacent roll cells at $Ro\leqslant 0.2$ . (2) Coriolis-force-generated turbulent vortices cause strong incoherent transport and homogenization of significant polymer stress in the bulk via their vortical circulations at $Ro=0.5 - 0.9$ .


2017 ◽  
Vol 837 ◽  
pp. 477-490 ◽  
Author(s):  
Zhenhua Xia ◽  
Yipeng Shi ◽  
Qingdong Cai ◽  
Minping Wan ◽  
Shiyi Chen

Turbulence is ubiquitous in nature and engineering applications. Although Kolmogorov’s (C. R. Acad. Sci. URSS, vol. 30, 1941a, pp. 301–305;Dokl. Akad. Nauk URSS, vol. 30, 1941b, pp. 538–540) theory suggested a unique turbulent state for high Reynolds numbers, multiple states were reported for several flow problems, such as Rayleigh–Bénard convection and Taylor–Couette flows. In this paper, we report that multiple states also exist for turbulent plane Couette flow with spanwise rotation through direct numerical simulations at rotation number$Ro=0.2$and Reynolds number$Re_{w}=1300$based on the angular velocity in the spanwise direction and half of the wall velocity difference. With two different initial flow fields, our results show that the flow statistics, including the mean streamwise velocity and Reynolds stresses, show different profiles. These different flow statistics are closely related to the flow structures in the domain, where one state corresponds to two pairs of roll cells, and the other shows three pairs. The present result enriches the studies on multiple states in turbulence.


Equipment ◽  
2006 ◽  
Author(s):  
S. Hane ◽  
T. Tsukahara ◽  
K. Iwamoto ◽  
H. Kawamura

2003 ◽  
Vol 47 (3) ◽  
pp. 737-757 ◽  
Author(s):  
Hiroshi Mizunuma ◽  
Hideyuki Takagi

2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Yuhan Huang ◽  
Zhenhua Xia ◽  
Minping Wan ◽  
Yipeng Shi ◽  
Shiyi Chen

Sign in / Sign up

Export Citation Format

Share Document