convective momentum transport
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 11)

H-INDEX

19
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Alessandro Carlo Maria Savazzi ◽  
Louise Nuijens ◽  
Irina Sandu ◽  
Geet George ◽  
Peter Bechtold

Abstract. The characterization of systematic forecast errors in lower-tropospheric winds over the ocean is a primary need for reforming models. Winds are among the drivers of convection, thus an accurate representation of winds is essential for better convective parameterizations. We focus on the temporal variability and vertical distribution of lower-tropospheric wind biases in operational medium-range weather forecasts and ERA5 reanalyses produced with the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). Thanks to several sensitivity experiments and an unprecedented wealth of measurements from the 2020 EUREC4A field campaign, we show that the wind bias varies greatly from day to day, resulting in RSME's up to 2.5 m s−1, with a mean wind speed bias up to −1 m s−1 near and above the trade-inversion in the forecasts and up to −0.5 m s−1 in reanalyses. The modeled zonal and meridional wind exhibit a too strong diurnal cycle, leading to a weak wind speed bias everywhere up to 5 km during daytime, turning into a too strong wind speed bias below 2 km at nighttime. The biases are fairly insensitive to the assimilation of sondes and likely related to remote convection and large scale pressure gradients. Convective momentum transport acts to distribute biases throughout the lowest 1.5 km, whereas at higher levels, other unresolved or dynamical tendencies play a role in setting the bias. Below 1 km, modelled friction due to unresolved physical processes appears too strong, but is (partially) compensated by dynamical tendencies, making this a challenging coupled problem.


2021 ◽  
Vol 931 ◽  
Author(s):  
Yabiao Zhu ◽  
Jiaxing Song ◽  
Fenghui Lin ◽  
Nansheng Liu ◽  
Xiyun Lu ◽  
...  

Direct numerical simulation of spanwise-rotation-driven flow transitions in viscoelastic plane Couette flow from a drag-reduced inertial to a drag-enhanced elasto-inertial turbulent flow state followed by full relaminarization is reported for the first time. Specifically, this novel flow transition begins with a drag-reduced inertial turbulent flow state at a low rotation number $0\leqslant Ro \leqslant 0.1$ , and then transitions to a rotation/polymer-additive-driven drag-enhanced inertial turbulent regime, $0.1\leqslant Ro \leqslant 0.3$ . In turn, the flow transitions to a drag-enhanced elasto-inertial turbulent state, $0.3\leqslant Ro \leqslant 0.9$ , and eventually relaminarizes at $Ro=1$ . In addition, two novel rotation-dependent drag enhancement mechanisms are proposed and substantiated. (1) The formation of large-scale roll cells results in enhanced convective momentum transport along with significant polymer elongation and stress generated in the extensionally dominated flow between adjacent roll cells at $Ro\leqslant 0.2$ . (2) Coriolis-force-generated turbulent vortices cause strong incoherent transport and homogenization of significant polymer stress in the bulk via their vortical circulations at $Ro=0.5 - 0.9$ .


2020 ◽  
Author(s):  
Edward Groot ◽  
Holger Tost

Abstract. The sensitivity of upper tropospheric and lower stratospheric convective outflows and related divergence fields is analysed using an ensemble of cloud resolving model (CM1) simulations in LES-mode including various physically manipulated simulations for three different convective systems initialized with an idealized trigger. The main goal of this study is to assess to what extend the divergence field depends on cloud microphysical processes, the mode of convection and on the processes of convective momentum transport and moist static energy redistribution. We find that latent heat release (representing the microphysical uncertainty) plays an essential role by explaining much of magnitude of the divergence field that will be formed. Convective organisation explains another important fraction of the variability in the divergence field that is formed by a convective system and behaves non-linearly, likely partly via condensation and subsequent (re-)evaporation/sublimation. The detrainment of stratospheric air also shows large sensitivity among the experiments.


2020 ◽  
Vol 148 (11) ◽  
pp. 4693-4695 ◽  
Author(s):  
Hing Ong

AbstractThis comment on Hitchman and Rowe first deepens their introduction by distinguishing adiabatic and diabatic tilting of vorticity. Then, it strengthens their interpretation by emphasizing that momentum must be vertically transported with reference to isentropic levels to yield the potential vorticity (PV) dipoles. Moreover, it points out a flaw in their PV budget analysis and proposes a remedy for the flaw. Their convective momentum transport paradigm and the vorticity tilting paradigm reinterpret the same physical process. However, they counted one physical process twice by associating the two paradigms with two different terms. As an attempt to remedy the flaw, this comment associates the reinterpretation of the two paradigms with a transformation of the PV equation; their paradigm corresponds to a flux form. With the proposed remedy, their paradigm can be more easily translated to advances in convective parameterization because of its horizontal locality.


2020 ◽  
Vol 148 (11) ◽  
pp. 4397-4414
Author(s):  
Shellie M. Rowe ◽  
Matthew H. Hitchman

AbstractThe stalling and rapid destruction of a potential vorticity (PV) anomaly in the upper troposphere–lower stratosphere (UTLS) by convectively detrained inertially unstable air is described. On 20 August 2018, 10–15 in. (~0.3–0.4 m) of rain fell on western Dane County, Wisconsin, primarily during 0100–0300 UTC 21 August (1900–2100 CDT 20 August), leading to extreme local flooding. Dynamical aspects are investigated using the University of Wisconsin Nonhydrostratic Modeling System (UWNMS). Results are compared with available radiosonde, radar, total rainfall estimates, satellite infrared, and high-resolution European Centre for Medium-Range Weather Forecasts (ECMWF) operational analyses. Using ECMWF analyses, the formation of the UTLS PV anomaly is traced to its origin a week earlier in a PV streamer over the west coast of North America. The rainfall maximum over southern Wisconsin was associated with this PV anomaly, whereby convection forming in the warm-upglide sector rotated cyclonically into the region. The quasi-stationarity of this rainfall feature was aided by a broad northeastward surge of inertially unstable convective outflow air into southeastern Wisconsin, which coincided with stalling of the eastward progression of the PV anomaly and its diversion into southern Wisconsin, extending heavy rainfall for several hours. Cessation of rainfall coincided with dilution of the PV maximum in less than an hour (2100–2200 CDT), associated with the arrival of negative PV in the upper troposphere. The region of negative PV was created when convection over Illinois transported air with low wind speed into northeastward shear. This feature is diagnosed using the convective momentum transport hypothesis.


2020 ◽  
Author(s):  
Beatrice Saggiorato ◽  
Louise Nuijens ◽  
A. Pier Siebesma ◽  
Stephan de Roode ◽  
Irina Sandu ◽  
...  

<p>To study the influence of convective momentum transport (CMT) on wind, boundary layer and cloud evolution in a marine cold air outbreak (CAO) we use Large-Eddy Simulations subjected to different baroclinicity (wind shear) but similar surface forcing. The simulated domain is large enough ( ≈100 × 100 km<sup>2</sup>) to develop typical mesoscale cellular convective structures.  We find that a maximum friction induced by momentum transport (MT) locates in the cloud layer for an increase of geostrophic wind with height (forward shear, FW) and near the surface for a decrease of wind with height (backward shear, BW). Although the total MT always acts as a friction, the interaction of friction-induced cross-isobaric flow with the Coriolis force can develop super-geostrophic winds near the surface (FW) or in the cloud layer (BW). The contribution of convection to MT is evaluated by decomposing the momentum flux by column water vapor and eddy size, revealing that CMT acts to accelerate sub-cloud layer winds under FW shear and that mesoscale circulations contribute significantly to MT for this horizontal resolution (250 m), even if small scale eddies are non-negligible and likely more important as resolution increases. Under FW shear, a deeper boundary layer and faster cloud transition are simulated, because MT acts to increase surface fluxes and wind shear enhances turbulent mixing across cloud tops. Our results show that the coupling between winds and convection is crucial for a range of problems, from CAO lifetime and cloud transitions to ocean heat loss and near-surface wind variability.</p>


2020 ◽  
Author(s):  
Edward Groot ◽  
Holger Tost

<p>In this study we are trying to understand (limits of) predictability related to (organised) convection and its upscale error growth.</p><p>For that purpose we aim to analyse the impact of three convection driving and amplifying processes, namely latent heat release, redistribution of moist static energy and convective momentum transport on the development of the convective cells. Furthermore, we plan to investigate uncertainties in these processes on downward propagation of the flow and ensemble spread.</p><p>The first results to be presented regard an idealised and strongly organised case of splitting convective storms modeled at different resolutions and with some small adaptations in the model convective cloud resolving model CM1. Currently processed resolution experiments show that both the actual divergence field and the processes supected to underlie it exhibit some sensitivity to model resolution on the subkilometre scale (100-1000 m). We can also show that the upper tropospheric divergence can be directly related to the latent heat release, as it is located vertically above the major latent heat releases. Nevertheless, neither the vertical redistribution of moist static energy nor the convective momentum transport are negligible and all three impact the divergent outflow of the convective storm.</p>


2019 ◽  
Vol 147 (11) ◽  
pp. 4107-4125 ◽  
Author(s):  
Matthew H. Hitchman ◽  
Shellie M. Rowe

Abstract The structure and origin of mesoscale jets and associated potential vorticity (PV) dipoles in the upper troposphere and lower stratosphere (UTLS) in tropical cyclones (TCs) are investigated. UTLS PV dipole/jetlets, which occurred in Talas (2011), Edouard (2014), and Ita (2014), are simulated with the University of Wisconsin Nonhydrostatic Modeling System (UWNMS). PV dipoles are confined to the UTLS, where the jetlets oppose the ambient anticyclonic flow. They form ~100–250 km from the eye in convective asymmetries and are characterized by surges of air that accelerate in the updraft, overshoot, and extend radially outward. In these cases, the outflow jet merges with the subtropical westerly jet. Analysis of the structure of UTLS PV dipole/jetlets led to a new physical interpretation for their formation, based on the difference in momentum between the updraft and air in the UTLS: the convective momentum transport hypothesis. This view is complementary to the vorticity tilting hypothesis. A jetlet will form whenever an updraft carries horizontal winds to a level with different wind. Schematic diagrams show how to predict jetlet orientation based on horizontal speeds in the updraft and UTLS ambient air. In TCs, horizontal winds in the updraft are cyclonic, so a UTLS jetlet will be cyclonic and oppose the ambient flow. Each jetlet creates an anticyclonic, inertially unstable PV member, which lies radially outward. Estimates of terms in the PV conservation equation support the hypothesis that the dipoles arise from the curl of shear stress. Convective asymmetries associated with PV dipole/jetlets can significantly modify TC evolution by local thermodynamic acceleration.


Sign in / Sign up

Export Citation Format

Share Document