Nitric oxide suppresses stomatal opening by inhibiting inward-rectifying K in + channels in Arabidopsis guard cells

2008 ◽  
Vol 53 (14) ◽  
pp. 2156-2159 ◽  
Author(s):  
ShaoWu Xue ◽  
Pin Yang ◽  
YiKun He
2011 ◽  
Vol 38 (10) ◽  
pp. 767 ◽  
Author(s):  
Xi-Gui Song ◽  
Xiao-Ping She ◽  
Juan Wang ◽  
Yi-Chao Sun

The plant hormone ethylene regulates many aspects of plant growth and development. Despite the well-known relationship between ethylene and stress signalling, the involvement of ethylene in regulating stomatal movement is not completely explored. Here, the role and association between nitric oxide (NO) reduction and the inhibition of darkness-induced stomatal closure by ethylene was studied. Physiological data are provided that both ethylene-releasing compound 2-chloroethylene phosphonic acid (ethephon, ETH) and 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene, reduced the levels of NO in Vicia faba L. guard cells, and then induced stomatal opening in darkness. In addition, ACC and ETH not only reduced NO levels in guard cells caused by exogenous NO (derived from sodium nitroprusside, SNP) in light, but also abolished NO that had been generated during a dark period and promoted stomatal opening. Interestingly, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) and hemoglobin (Hb), NO scavenger and the potent scavenger of NO/carbon monoxide (CO), respectively, also reduced NO levels by SNP and darkness. However, the above-mentioned effects of ACC and ETH were dissimilar to that of nitric oxide synthase (enzyme commission 1.14.13.39) inhibitor NG-nitro-L-Arg-methyl ester (L-NAME), which could neither reduce NO levels by SNP nor abolish NO that had been generated in the dark. Thus, it is concluded that ethylene reduces the levels of NO in V. faba guard cells via a pattern of NO scavenging, then induces stomatal opening in the dark.


Plant Science ◽  
2012 ◽  
Vol 184 ◽  
pp. 29-35 ◽  
Author(s):  
Xiang Zhao ◽  
Xin-rong Qiao ◽  
Jing Yuan ◽  
Xiao-fen Ma ◽  
Xiao Zhang

2021 ◽  
Vol 12 ◽  
Author(s):  
Shigeo Toh ◽  
Naoki Takata ◽  
Eigo Ando ◽  
Yosuke Toda ◽  
Yin Wang ◽  
...  

Stomata in the plant epidermis open in response to light and regulate CO2 uptake for photosynthesis and transpiration for uptake of water and nutrients from roots. Light-induced stomatal opening is mediated by activation of the plasma membrane (PM) H+-ATPase in guard cells. Overexpression of PM H+-ATPase in guard cells promotes light-induced stomatal opening, enhancing photosynthesis and growth in Arabidopsis thaliana. In this study, transgenic hybrid aspens overexpressing Arabidopsis PM H+-ATPase (AHA2) in guard cells under the strong guard cell promoter Arabidopsis GC1 (AtGC1) showed enhanced light-induced stomatal opening, photosynthesis, and growth. First, we confirmed that AtGC1 induces GUS expression specifically in guard cells in hybrid aspens. Thus, we produced AtGC1::AHA2 transgenic hybrid aspens and confirmed expression of AHA2 in AtGC1::AHA2 transgenic plants. In addition, AtGC1::AHA2 transgenic plants showed a higher PM H+-ATPase protein level in guard cells. Analysis using a gas exchange system revealed that transpiration and the photosynthetic rate were significantly increased in AtGC1::AHA2 transgenic aspen plants. AtGC1::AHA2 transgenic plants showed a>20% higher stem elongation rate than the wild type (WT). Therefore, overexpression of PM H+-ATPase in guard cells promotes the growth of perennial woody plants.


2006 ◽  
Vol 33 (6) ◽  
pp. 573 ◽  
Author(s):  
Xi-Gui Song ◽  
Xiao-Ping She ◽  
Jun-Min He ◽  
Chen Huang ◽  
Tu-sheng Song

Previous studies have shown that cytokinins and auxins can induce the opening of stomata. However, the mechanism of stomatal opening caused by cytokinins and auxins remains unclear. The purpose of this paper is to investigate the relationship between hydrogen peroxide (H2O2) levels in guard cells and stomatal opening induced by cytokinins and auxins in Vicia faba. By means of stomatal bioassay and laser-scanning confocal microscopy, we provide evidence that cytokinins and auxins reduced the levels of H2O2 in guard cells and induced stomatal opening in darkness. Additionally, cytokinins not only reduced exogenous H2O2 levels in guard cells caused by exposure to light, but also abolished H2O2 that had been generated during a dark period, and promoted stomatal opening, as did ascorbic acid (ASA, an important reducing substrate for H2O2 removal). However, unlike cytokinins, auxins did not reduce exogenous H2O2, did not abolish H2O2 that had been generated in the dark, and therefore did not promote reopening of stoma induced to close in the dark. The above-mentioned effects of auxins were similar to that of diphenylene iodonium (DPI, an inhibitor of the H2O2-generating enzyme NADPH oxidase). Taken together our results indicate that cytokinins probably reduce the levels of H2O2 in guard cells by scavenging, whereas auxins limit H2O2 levels through restraining H2O2 generation, inducing stomatal opening in darkness.


2018 ◽  
Vol 94 (4) ◽  
pp. 583-594 ◽  
Author(s):  
David B. Medeiros ◽  
Leonardo Perez Souza ◽  
Werner C. Antunes ◽  
Wagner L. Araújo ◽  
Danilo M. Daloso ◽  
...  
Keyword(s):  

2020 ◽  
Vol 19 (1) ◽  
pp. 88-98 ◽  
Author(s):  
Maki Hayashi ◽  
Hodaka Sugimoto ◽  
Hirotaka Takahashi ◽  
Motoaki Seki ◽  
Kazuo Shinozaki ◽  
...  

Raf-like kinases CBC1 and CBC2 negatively regulate phosphorylation of plasma membrane H+-ATPase in guard cells and blue light-dependent stomatal opening.


Sign in / Sign up

Export Citation Format

Share Document