Inhibition of stomatal opening during uptake of carbohydrates by guard cells in isolated epidermal tissues

Planta ◽  
1978 ◽  
Vol 139 (2) ◽  
pp. 167-170 ◽  
Author(s):  
P. Dittrich ◽  
M. Mayer
Keyword(s):  
2021 ◽  
Vol 12 ◽  
Author(s):  
Shigeo Toh ◽  
Naoki Takata ◽  
Eigo Ando ◽  
Yosuke Toda ◽  
Yin Wang ◽  
...  

Stomata in the plant epidermis open in response to light and regulate CO2 uptake for photosynthesis and transpiration for uptake of water and nutrients from roots. Light-induced stomatal opening is mediated by activation of the plasma membrane (PM) H+-ATPase in guard cells. Overexpression of PM H+-ATPase in guard cells promotes light-induced stomatal opening, enhancing photosynthesis and growth in Arabidopsis thaliana. In this study, transgenic hybrid aspens overexpressing Arabidopsis PM H+-ATPase (AHA2) in guard cells under the strong guard cell promoter Arabidopsis GC1 (AtGC1) showed enhanced light-induced stomatal opening, photosynthesis, and growth. First, we confirmed that AtGC1 induces GUS expression specifically in guard cells in hybrid aspens. Thus, we produced AtGC1::AHA2 transgenic hybrid aspens and confirmed expression of AHA2 in AtGC1::AHA2 transgenic plants. In addition, AtGC1::AHA2 transgenic plants showed a higher PM H+-ATPase protein level in guard cells. Analysis using a gas exchange system revealed that transpiration and the photosynthetic rate were significantly increased in AtGC1::AHA2 transgenic aspen plants. AtGC1::AHA2 transgenic plants showed a>20% higher stem elongation rate than the wild type (WT). Therefore, overexpression of PM H+-ATPase in guard cells promotes the growth of perennial woody plants.


2006 ◽  
Vol 33 (6) ◽  
pp. 573 ◽  
Author(s):  
Xi-Gui Song ◽  
Xiao-Ping She ◽  
Jun-Min He ◽  
Chen Huang ◽  
Tu-sheng Song

Previous studies have shown that cytokinins and auxins can induce the opening of stomata. However, the mechanism of stomatal opening caused by cytokinins and auxins remains unclear. The purpose of this paper is to investigate the relationship between hydrogen peroxide (H2O2) levels in guard cells and stomatal opening induced by cytokinins and auxins in Vicia faba. By means of stomatal bioassay and laser-scanning confocal microscopy, we provide evidence that cytokinins and auxins reduced the levels of H2O2 in guard cells and induced stomatal opening in darkness. Additionally, cytokinins not only reduced exogenous H2O2 levels in guard cells caused by exposure to light, but also abolished H2O2 that had been generated during a dark period, and promoted stomatal opening, as did ascorbic acid (ASA, an important reducing substrate for H2O2 removal). However, unlike cytokinins, auxins did not reduce exogenous H2O2, did not abolish H2O2 that had been generated in the dark, and therefore did not promote reopening of stoma induced to close in the dark. The above-mentioned effects of auxins were similar to that of diphenylene iodonium (DPI, an inhibitor of the H2O2-generating enzyme NADPH oxidase). Taken together our results indicate that cytokinins probably reduce the levels of H2O2 in guard cells by scavenging, whereas auxins limit H2O2 levels through restraining H2O2 generation, inducing stomatal opening in darkness.


2018 ◽  
Vol 94 (4) ◽  
pp. 583-594 ◽  
Author(s):  
David B. Medeiros ◽  
Leonardo Perez Souza ◽  
Werner C. Antunes ◽  
Wagner L. Araújo ◽  
Danilo M. Daloso ◽  
...  
Keyword(s):  

2020 ◽  
Vol 19 (1) ◽  
pp. 88-98 ◽  
Author(s):  
Maki Hayashi ◽  
Hodaka Sugimoto ◽  
Hirotaka Takahashi ◽  
Motoaki Seki ◽  
Kazuo Shinozaki ◽  
...  

Raf-like kinases CBC1 and CBC2 negatively regulate phosphorylation of plasma membrane H+-ATPase in guard cells and blue light-dependent stomatal opening.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wenxiu Ye ◽  
Shota Koya ◽  
Yuki Hayashi ◽  
Huimin Jiang ◽  
Takaya Oishi ◽  
...  

Stomatal guard cells (GCs) are highly specialized cells that respond to various stimuli, such as blue light (BL) and abscisic acid, for the regulation of stomatal aperture. Many signaling components that are involved in the stomatal movement are preferentially expressed in GCs. In this study, we identified four new such genes in addition to an aluminum-activated malate transporter, ALMT6, and GDSL lipase, Occlusion of Stomatal Pore 1 (OSP1), based on the expression analysis using public resources, reverse transcription PCR, and promoter-driven β-glucuronidase assays. Some null mutants of GC-specific genes evidenced altered stomatal movement. We further investigated the role played by ALMT6, a vacuolar malate channel, in stomatal opening. Epidermal strips from an ALMT6-null mutant exhibited defective stomatal opening induced by BL and fusicoccin, a strong plasma membrane H+-ATPase activator. The deficiency was enhanced when the assay buffer [Cl–] was low, suggesting that malate and/or Cl– facilitate efficient opening. The results indicate that the GC-specific genes are frequently involved in stomatal movement. Further detailed analyses of the hitherto uncharacterized GC-specific genes will provide new insights into stomatal regulation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zirong Ren ◽  
Bazhen Suolang ◽  
Tadashi Fujiwara ◽  
Dan Yang ◽  
Yusuke Saijo ◽  
...  

Plasma membrane proton-ATPase (PM H+-ATPase) is a primary H+ transporter that consumes ATP in vivo and is a limiting factor in the blue light-induced stomatal opening signaling pathway. It was recently reported that manipulation of PM H+-ATPase in stomatal guard cells and other tissues greatly improved leaf photosynthesis and plant growth. In this report, we review and discuss the function of PM H+-ATPase in the context of the promotion and upregulation H+-ATPase strategy, including associated principles pertaining to enhanced stomatal opening, environmental plasticity, and potential applications in crops and nanotechnology. We highlight the great potential of the promotion and upregulation H+-ATPase strategy, and explain why it may be applied in many crops in the future.


1971 ◽  
Vol 24 (3) ◽  
pp. 689 ◽  
Author(s):  
DA Thomas

The addition of ATP in the light and dark and ADP in the light to bathing solutions containing K+ can stimulate stomatal opening in tobacco leaf epidermal strips. UTP or AMP do not stimulate opening in the light or dark. The presence of ouabain prevents ATP or ADP stimulating stomatal opening. The additions of Ca2+ and Mg2+, though they reduce stomatal aperture, do not prevent ATP stimulating stomatal opening. Increasing the concentration of ATP presented to the stomata in the dark increases the aperture. The rate of stomatal opening in the presence of ATP is increased in the light. In bathing solutions which contain Na+ as the only cation ATP neither initiates nor maintains stomatal opening. The results are discussed in relation to a postulated light-stimulated, ATPase-mediated accumulation ofK+ in the guard cells which is followed by an influx of water, osmotic swelling, and stomatal opening


Sign in / Sign up

Export Citation Format

Share Document