scholarly journals Programmed self-assembly of DNA origami nanoblocks into anisotropic higher-order nanopatterns

2013 ◽  
Vol 58 (21) ◽  
pp. 2646-2650 ◽  
Author(s):  
YanMing Fu ◽  
Jie Chao ◽  
HuaJie Liu ◽  
ChunHai Fan
2010 ◽  
Vol 132 (38) ◽  
pp. 13545-13552 ◽  
Author(s):  
Zhe Li ◽  
Minghui Liu ◽  
Lei Wang ◽  
Jeanette Nangreave ◽  
Hao Yan ◽  
...  

Author(s):  
Alex E. Marras ◽  
Haijun J. Su ◽  
Carlos E. Castro

This research introduces DNA origami as a viable approach to design and fabricate nanoscale mechanisms and machines. DNA origami is a recently developed nanotechnology that has enabled the construction of objects with unprecedented nanoscale geometric complexity via self-assembly. These objects are made up of thousands of DNA base-pairs packed into 3D structures with typical dimensions of 10–100nm. The majority of DNA origami research to date focuses on assembly of static 2D or 3D structures. In this work, we aim to extend the scope of DNA origami to include design of objects with kinematically constrained moving parts. Borrowing concepts from macro-scale kinematic mechanisms, we propose the concept of DNA Origami Mechanisms and Machines (DOMM) comprised of multiple links connected by joints. The links are designed by bundling double stranded DNA (dsDNA) helices to achieve the desired geometry and stiffness. The joints are designed by combining links with strategic placement flexible single stranded DNA (ssDNA) to enable motion in specific degrees of freedom. We detail design approaches for links and common joints including revolute, prismatic, and spherical, and discuss their integration into higher order mechanisms. As a proof of concept, we built a nanoscale hinge (revolute joint) and integrated four of these hinges into a prototype DOMM, namely a Bennett 4-bar linkage, which can be completely folded into a closed bundle geometry and unfolded into an open square geometry with a specified kinematic motion path. A kinematic analysis shows that the DNA Bennett linkage closely follows the 3D motion path of the rigid body counterpart. Our results demonstrate that DNA origami has high potential for the design and assembly of nanoscale machines. The ultimate goal of this work is to develop a library of nanoscale DNA-based links and joints that can be widely used in the design and assembly of higher order mechanisms and machines. We anticipate that, in the future, these components can be used to build nanorobots for useful applications including drug delivery, nanomanufacturing, and biosensing.


2021 ◽  
Author(s):  
Joshua A. Johnson ◽  
Vasiliki Kolliopoulos ◽  
Carlos E. Castro

We demonstrate co-self-assembly of two distinct DNA origami structures with a common scaffold strand through programmable bifurcation of folding pathways.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
David M. Smith ◽  
Verena Schüller ◽  
Carsten Forthmann ◽  
Robert Schreiber ◽  
Philip Tinnefeld ◽  
...  

Nanometer-sized polyhedral wire-frame objects hold a wide range of potential applications both as structural scaffolds as well as a basis for synthetic nanocontainers. The utilization of DNA as basic building blocks for such structures allows the exploitation of bottom-up self-assembly in order to achieve molecular programmability through the pairing of complementary bases. In this work, we report on a hollow but rigid tetrahedron framework of 75 nm strut length constructed with the DNA origami method. Flexible hinges at each of their four joints provide a means for structural variability of the object. Through the opening of gaps along the struts, four variants can be created as confirmed by both gel electrophoresis and direct imaging techniques. The intrinsic site addressability provided by this technique allows the unique targeted attachment of dye and/or linker molecules at any point on the structure's surface, which we prove through the superresolution fluorescence microscopy technique DNA PAINT.


2009 ◽  
Vol 5 (1) ◽  
pp. 61-66 ◽  
Author(s):  
Hareem T. Maune ◽  
Si-ping Han ◽  
Robert D. Barish ◽  
Marc Bockrath ◽  
William A. Goddard III ◽  
...  

2015 ◽  
Vol 143 (16) ◽  
pp. 165102 ◽  
Author(s):  
Frits Dannenberg ◽  
Katherine E. Dunn ◽  
Jonathan Bath ◽  
Marta Kwiatkowska ◽  
Andrew J. Turberfield ◽  
...  

ChemNanoMat ◽  
2018 ◽  
Vol 4 (8) ◽  
pp. 821-830 ◽  
Author(s):  
Flavio della Sala ◽  
Wessel Verbeet ◽  
Simone Silvestrini ◽  
Ilaria Fortunati ◽  
Camilla Ferrante ◽  
...  

Nano Research ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 3142-3150 ◽  
Author(s):  
Yang Xin ◽  
Salvador Martinez Rivadeneira ◽  
Guido Grundmeier ◽  
Mario Castro ◽  
Adrian Keller

Abstract The surface-assisted hierarchical self-assembly of DNA origami lattices represents a versatile and straightforward method for the organization of functional nanoscale objects such as proteins and nanoparticles. Here, we demonstrate that controlling the binding and exchange of different monovalent and divalent cation species at the DNA-mica interface enables the self-assembly of highly ordered DNA origami lattices on mica surfaces. The development of lattice quality and order is quantified by a detailed topological analysis of high-speed atomic force microscopy (HS-AFM) images. We find that lattice formation and quality strongly depend on the monovalent cation species. Na+ is more effective than Li+ and K+ in facilitating the assembly of high-quality DNA origami lattices, because it is replacing the divalent cations at their binding sites in the DNA backbone more efficiently. With regard to divalent cations, Ca2+ can be displaced more easily from the backbone phosphates than Mg2+ and is thus superior in guiding lattice assembly. By independently adjusting incubation time, DNA origami concentration, and cation species, we thus obtain a highly ordered DNA origami lattice with an unprecedented normalized correlation length of 8.2. Beyond the correlation length, we use computer vision algorithms to compute the time course of different topological observables that, overall, demonstrate that replacing MgCl2 by CaCl2 enables the synthesis of DNA origami lattices with drastically increased lattice order.


2015 ◽  
Author(s):  
Yoon Jo Hwang ◽  
Shelley F. J. Wickham ◽  
Steven D. Perrault ◽  
Sanghyun Yoo ◽  
Sung Ha Park ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document