linker molecules
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 22)

H-INDEX

24
(FIVE YEARS 3)

2021 ◽  
Vol 402 (11) ◽  
pp. 1357-1374
Author(s):  
Jan Krieghoff ◽  
Mathis Gronbach ◽  
Michaela Schulz-Siegmund ◽  
Michael C. Hacker

Abstract Macromers, polymeric molecules with at least two functional groups for cross-polymerization, are interesting materials to tailor mechanical, biochemical and degradative bulk and surface properties of implants for tissue regeneration. In this review we focus on macromers with at least one biodegradable building block. Manifold design options, such as choice of polymeric block(s), optional core molecule and reactive groups, as well as cross-co-polymerization with suitable anchor or linker molecules, allow the adaptation of macromer-based biomaterials towards specific application requirements in both hard and soft tissue regeneration. Implants can be manufactured from macromers using additive manufacturing as well as molding and templating approaches. This review summarizes and discusses the overall concept of biodegradable macromers and recent approaches for macromer processing into implants as well as techniques for surface modification directed towards bone regeneration. These aspects are reviewed including a focus on the authors’ contributions to the field through research within the collaborative research project Transregio 67.


Author(s):  
Florian Grassl ◽  
Aladin Ullrich ◽  
Ahmed E. Mansour ◽  
Shaimaa M. Abdalbaqi ◽  
Norbert Koch ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 434
Author(s):  
Yunzhuo Li ◽  
Zirong Tang ◽  
Chen Chen

We report that ethanol, used together with water, plays a crucial role in tuning the structures of a zirconium-based metal–organic framework and the 12-connected MOF-801, as well as the possible mechanisms of this modulating effect. By employing a cosolvent system of ethanol and water at just under room temperature without the presence of a monotopic carboxylic acid as the modulator, MOF-801 in various morphologies of different sizes could be synthesized. A linear correlation between the ethanol/water ratio and the crystal sizes is also demonstrated. The growth mechanism is mainly explained by ethanol’s bonding with the metal ion clusters and the Marangoni flow effect. Ethanol competes with the linker molecules in coordinating with the Zr metal clusters, a role similar to that of the modulators. The Marangoni flow effect, which dominates at a certain solvent ratio, further promotes the 1D alignment of the MOF-801 crystals.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Aishwaryadev Banerjee ◽  
Shakir-Ul Haque Khan ◽  
Samuel Broadbent ◽  
Ashrafuzzaman Bulbul ◽  
Kyeong Heon Kim ◽  
...  

AbstractWe report the electrical detection of captured gases through measurement of the quantum tunneling characteristics of gas-mediated molecular junctions formed across nanogaps. The gas-sensing nanogap device consists of a pair of vertically stacked gold electrodes separated by an insulating 6 nm spacer (~1.5 nm of sputtered α-Si and ~4.5 nm ALD SiO2), which is notched ~10 nm into the stack between the gold electrodes. The exposed gold surface is functionalized with a self-assembled monolayer (SAM) of conjugated thiol linker molecules. When the device is exposed to a target gas (1,5-diaminopentane), the SAM layer electrostatically captures the target gas molecules, forming a molecular bridge across the nanogap. The gas capture lowers the barrier potential for electron tunneling across the notched edge region, from ~5 eV to ~0.9 eV and establishes additional conducting paths for charge transport between the gold electrodes, leading to a substantial decrease in junction resistance. We demonstrated an output resistance change of >108 times upon exposure to 80 ppm diamine target gas as well as ultralow standby power consumption of <15 pW, confirming electron tunneling through molecular bridges for ultralow-power gas sensing.


2021 ◽  
Vol 8 ◽  
Author(s):  
Theodore Bungon ◽  
Carrie Haslam ◽  
Samar Damiati ◽  
Benjamin O’Driscoll ◽  
Toby Whitley ◽  
...  

We report on the fabrication and characterisation of graphene field-effect transistor (GFET) biosensors for the detection of Clusterin, a prominent protein biomarker of Alzheimer’s disease (AD). The GFET sensors were fabricated on Si/SiO2 substrate using photolithographic patterning and metal lift-off techniques with evaporated chromium and sputtered gold contacts. Raman Spectroscopy was performed on the devices to determine the quality of the graphene. The GFETs were annealed to improve their performance before the channels were functionalized by immobilising the graphene surface with linker molecules and anti-Clusterin antibodies. Concentration of linker molecules was also independently verified by absorption spectroscopy using the highly collimated micro-beam light of Diamond B23 beamline. The detection was achieved through the binding reaction between the antibody and varying concentrations of Clusterin antigen from 1 to 100 pg/mL, as well as specificity tests using human chorionic gonadotropin (hCG), a glycoprotein risk biomarker of certain cancers. The GFETs were characterized using direct current (DC) 4-probe electrical resistance (4-PER) measurements, which demonstrated a limit of detection of the biosensors to be ∼ 300 fg/mL (4 fM). Comparison with back-gated Dirac voltage shifts with varying concentration of Clusterin show 4-PER measurements to be more accurate, at present, and point to a requirement for further optimisation of the fabrication processes for our next generation of GFET sensors. Thus, we have successfully fabricated a promising set of GFET biosensors for the detection of Clusterin protein biomarker. The developed GFET biosensors are entirely generic and also have the potential to be applied to a variety of other disease detection applications such as Parkinson’s, cancer, and cardiovascular.


Author(s):  
Yunzhuo Li ◽  
Zirong Tang ◽  
Chen Chen

We report that ethanol, used together with water, plays a crucial role in tuning the structures of a zirconium-based Metal-Organic Framework, the 12-connected MOF-801, and the possible mechanisms of this modulating effect. By employing the cosolvent system of ethanol and water just under room temperature without the presence of a monotopic carboxylic acid as the modulator, MOF-801 in various morphologies of different sizes can be synthesized. The linear correlation between the ethanol/water ratio and the crystal sizes is also demonstrated. The growth mechanism is mainly explained by ethanol&rsquo;s binding with the metal ion clusters and the Marangoni Flow Effect. Ethanol competes with the linker molecules in coordinating with the Zr metal clusters, a role similar to that of the modulators. The Marangoni Flow Effect, which dominates at a certain solvent ratio, further promotes the 1-D alignment of the MOF-801 crystals.


2021 ◽  
Vol 44 (1) ◽  
pp. 92-102
Author(s):  
Mohsin Raza ◽  
Muhammad Javaid ◽  
Naeem Saleem

Abstract Metal-organic frameworks (MOF(n)) are organic-inorganic hybrid crystalline porous materials that consist of a regular array of positively charged metal ions surrounded by organic ‘linker’ molecules. The metal ions form nodes that bind the arms of the linkers together to form a repeating, cage-like structure. Moreover, in a chemical structure or molecular graph, edges and vertices are known as bonds and atoms, respectively. Metric dimension being a subsets of atoms with minimum cardinality is used in the substrcturing of the chemical compounds in the molecular structures. Fractional metric dimension is weighted version of metric dimension that associate a numeric value to the identified subset of atoms. In this paper, we have computed the fractional metric dimension of metal organic framework (MOF(n)) for n ≡ 0(mod)2.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 82
Author(s):  
Alena Jurásková ◽  
Stefan Møller Olsen ◽  
Kim Dam-Johansen ◽  
Michael A. Brook ◽  
Anne Ladegaard Skov

The long-term stability of condensation curing silicone elastomers can be affected by many factors such as curing environment, cross-linker type and concentration, and catalyst concentration. Mechanically unstable silicone elastomers may lead to undesirable application failure or reduced lifetime. This study investigates the stability of different condensation curing silicone elastomer compositions. Elastomers are prepared via the reaction of telechelic silanol-terminated polydimethylsiloxane (HO-PDMS-OH) with trimethoxysilane-terminated polysiloxane ((MeO)3Si-PDMS-Si(OMe)3) and ethoxy-terminated octakis(dimethylsiloxy)-T8-silsesquioxane ((QMOEt)8), respectively. Two post-curing reactions are found to significantly affect both the stability of mechanical properties over time and final properties of the resulting elastomers: Namely, the condensation of dangling and/or unreacted polymer chains, and the reaction between cross-linker molecules. Findings from the stability study are then used to prepare reliable silicone elastomer coatings. Coating properties are tailored by varying the cross-linker molecular weight, type, and concentration. Finally, it is shown that, by proper choice of all three parameters, a coating with excellent scratch resistance and electrical breakdown strength can be produced even without an addition of fillers.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2420
Author(s):  
Giulia Nascimbeni ◽  
Christof Wöll ◽  
Egbert Zojer

In recent years, optical and electronic properties of metal–organic frameworks (MOFs) have increasingly shifted into the focus of interest of the scientific community. Here, we discuss a strategy for conveniently tuning these properties through electrostatic design. More specifically, based on quantum-mechanical simulations, we suggest an approach for creating a gradient of the electrostatic potential within a MOF thin film, exploiting collective electrostatic effects. With a suitable orientation of polar apical linkers, the resulting non-centrosymmetric packing results in an energy staircase of the frontier electronic states reminiscent of the situation in a pin-photodiode. The observed one dimensional gradient of the electrostatic potential causes a closure of the global energy gap and also shifts core-level energies by an amount equaling the size of the original band gap. The realization of such assemblies could be based on so-called pillared layer MOFs fabricated in an oriented fashion on a solid substrate employing layer by layer growth techniques. In this context, the simulations provide guidelines regarding the design of the polar apical linker molecules that would allow the realization of MOF thin films with the (vast majority of the) molecular dipole moments pointing in the same direction.


Sign in / Sign up

Export Citation Format

Share Document