Effects of groundwater level on the seismic responses of coral sand ground and superstructure by shaking table tests

2021 ◽  
Author(s):  
Xuanming Ding ◽  
Yanling Zhang ◽  
Qi Wu ◽  
Guangwei Cao ◽  
Zhixiong Chen
2021 ◽  
Vol 109 ◽  
pp. 103775
Author(s):  
Xuanming Ding ◽  
Yanling Zhang ◽  
Qi Wu ◽  
Zhixiong Chen ◽  
Chenglong Wang

2021 ◽  
Vol 242 ◽  
pp. 112517
Author(s):  
Hanyun Zhang ◽  
Cai Jiang ◽  
Shuming Liu ◽  
Liaojun Zhang ◽  
Chen Wang ◽  
...  

2012 ◽  
Vol 166-169 ◽  
pp. 788-792
Author(s):  
Yamin Zhao ◽  
Jingyu Su ◽  
Ming Lu

A new vertical isolator designed by disk spring, called combined disk spring bearing (DSB), is introduced in this paper. DSB is composed of one main disk spring bearing and eight secondary disk spring bearings. Performance tests show that DSB had good property of variable vertical stiffness and high vertical damping. Then, the effectiveness of DSB vertical base-isolated devices in reducing structural responses caused by earthquakes through a series of 1/2 scale shaking table tests. are conducted to study the seismic responses of the and the DSB vertical-isolated system. Compared with the fixed-base system, experimental results show that the DSB vertical-isolated system can isolate vertical earthquake energy remarkably. Large displacement of the DSB vertical-isolated system occurred on the isolation layer, and the inter-story deformation of the superstructure changed slightly. The acceleration responses of DSB vertical-isolated system decreased more than 50% and the displacement responses decreased more than 40% at 0.4g PGA, which confirmed that DSB could decrease the seismic responses effectively.


2020 ◽  
Vol 14 (03) ◽  
pp. 2050011
Author(s):  
Lin Zhou ◽  
Guangya Ding ◽  
Jie Tan ◽  
Xiaoxia Zhao ◽  
Jun Wang

A series of shaking table tests were conducted on reinforced slopes to study the slope dynamic characteristics. The influence of concrete-canvas tilt degrees on the seismic response was studied. By considering the effects of different concrete-canvas tilt degrees, the seismic responses of the reinforced slopes were analyzed, along with the accelerations, crest settlements, and horizontal displacements. The failure patterns of different model slopes were compared using white coral sand marks placed at designated elevations to monitor the internal slide of the reinforced slopes. Several round markers were placed on the slope surface to compare the deformation before and after shaking with different amplitudes. The results indicated that with the increase in concrete-canvas tilt degrees, a better reinforcing effect was obtained, and 30° reinforcement reached a threshold level, the slide-out point shifts from the crest of the slope to the middle of the reinforced model. The bottom 2/7th zone of the slope was relatively stable during the earthquake and the reinforcement was ineffective at the bottom of the slope. When both considered the influence of reinforcing effect and construction difficulty, 20° is the suitable tilt degree in concrete-canvas reinforced slopes. The characteristics of increasing strength of the concrete canvas make it suitable for the application in slope protection.


2003 ◽  
Author(s):  
C. S. Tsai ◽  
Bo-Jen Chen ◽  
Tsu-Cheng Chiang ◽  
Guan-Hsing Lee

In conventional earthquake resistance design approach (the ductility-design philosophy), the energy dissipation mechanism is based on plastic deformations at scattered locations in the structure. However, this can produce permanent damage to the joints as well as the larger interstory displacements. In recently years, the base isolation technology has been adopted as a feasible and attractive way in improving seismic resistance of structures. It can shift the natural periods of structures away from the rich periods contents of earthquake motions, but also provide considerable supplemental damping to dissipate seismic energy transmitted into structures during earthquakes. In this paper, uniaxial, biaxial, and triaxial shaking table tests are performed to study the seismic behavior of a 0.4-scale three-story isolated steel structure in the National Center for Research on Earthquake Engineering in Taiwan. Experimental results demonstrate that structures with hybrid rubber bearings can actually decrease the seismic responses of the superstructure. It has been proved through the shaking table tests that the rubber bearing is a very promising tool to enhance the seismic resistibility of structures. Moreover, it is illustrated that the proposed analytical model and finite element formulation in this paper can well predict the mechanical behavior of rubber bearings and seismic responses of the base-isolated structures.


Author(s):  
C. S. Tsai ◽  
Wen-Shin Chen ◽  
Yung-Chang Lin ◽  
Chen-Tsung Yang ◽  
Ching-Pei Tsou

Since 1970’s, many types of braces have been developed without buckling under large compressive forces called the buckling restrained brace BRB, or unbonded brace. Recently, many investigators have made a lot of efforts to look into the behaviors of the buckling restrained brace under quasi-static forces, but few experimental results about shaking table tests of a structure with buckling restrained braces have been published. Therefore, in this study, a series of shaking table tests were carried out in the National Center for Research on Earthquake Engineering, and the issue is focused on observing the seismic responses of a full-scale three-story steel structure with multi-curved reinforced buckling restrained braces subjected to earthquake ground motions. Experimental results show that most column shear forces and displacements had been reduced by the RBRB devices. In addition, the absolute accelerations had also been favorably diminished during earthquakes. It can be proven that the proposed device is suitable for applications of seismic mitigation for structures.


2012 ◽  
Vol 450-451 ◽  
pp. 1513-1517
Author(s):  
Qian Zhou ◽  
Wei Ming Yan ◽  
Jin Bao Ji

Plastic fastener is a typical strengthening material for museum movable cultural relics in China.To find out strengthening effects of this material,by shaking table tests seismic responses of a ceramic relic in a 1:1 scale showcase model were studied.2 boundary conditions of the relic were considered:free-standing and strengthened by plastic fastener. By white noise excitation basic frequency of the showcase was obtained; by inputting El-centro earthquake waves of different intensities,seismic responses of both showcase and relic were studied,aseismic results of plastic fasteners were discussed. By simulation method finite element models for the showcase and strengthened relic were built,modal as well as time history analyses were carried out to validate the effectivity of shaking table tests.Results show that prominent frequency ingredients of the showcase are far greater than those of the input earthquake waves,thus the showcase is not damaged seriously; for the relic after it is strengthened by plastic fasteners,its peak displacement and acceleration response values decrease,which still embody obviously under strong earthquakes.Thus by plastic fasteners the relic can be effectively strengthened. Besides,simulation results are well in accordance with those of shaking table tests,which proves effectivity of the test method.


Sign in / Sign up

Export Citation Format

Share Document