Comparison of fractal characteristics of species richness patterns among different plant taxonomic groups along an altitudinal gradient

2007 ◽  
Vol 2 (1) ◽  
pp. 11-17 ◽  
Author(s):  
Haibao Ren ◽  
Linyan Zhang ◽  
Keping Ma
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Camila D. Ritter ◽  
Søren Faurby ◽  
Dominic J. Bennett ◽  
Luciano N. Naka ◽  
Hans ter Steege ◽  
...  

AbstractMost knowledge on biodiversity derives from the study of charismatic macro-organisms, such as birds and trees. However, the diversity of micro-organisms constitutes the majority of all life forms on Earth. Here, we ask if the patterns of richness inferred for macro-organisms are similar for micro-organisms. For this, we barcoded samples of soil, litter and insects from four localities on a west-to-east transect across Amazonia. We quantified richness as Operational Taxonomic Units (OTUs) in those samples using three molecular markers. We then compared OTU richness with species richness of two relatively well-studied organism groups in Amazonia: trees and birds. We find that OTU richness shows a declining west-to-east diversity gradient that is in agreement with the species richness patterns documented here and previously for birds and trees. These results suggest that most taxonomic groups respond to the same overall diversity gradients at large spatial scales. However, our results show a different pattern of richness in relation to habitat types, suggesting that the idiosyncrasies of each taxonomic group and peculiarities of the local environment frequently override large-scale diversity gradients. Our findings caution against using the diversity distribution of one taxonomic group as an indication of patterns of richness across all groups.


2008 ◽  
Vol 18 (1) ◽  
pp. 203-217 ◽  
Author(s):  
M. A. Schouten ◽  
P. A. Verweij ◽  
A. Barendregt ◽  
R. M. J. C. Kleukers ◽  
V. J. Kalkman ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Jörn Buse ◽  
Eva Maria Griebeler

Applying multiple generalized regression models, we studied spatial patterns in species richness for different taxonomic groups (amphibians, reptiles, grasshoppers, plants, mosses) within the German federal state Rhineland-Palatinate (RP). We aimed (1) to detect their centres of richness, (2) to rate the influence of climatic and land-use parameters on spatial patterns, and (3) to test whether patterns are congruent between taxonomic groups in RP. Centres of species richness differed between taxonomic groups and overall richness was the highest in the valleys of large rivers and in different areas of southern RP. Climatic parameters strongly correlated with richness in all taxa whereas land use was less significant. Spatial richness patterns of all groups were to a certain extent congruent but differed between group pairs. The number of grasshoppers strongly correlated with the number of plants and with overall species richness. An external validation corroborated the generality of our species richness models.


2016 ◽  
Vol 94 (7) ◽  
pp. 453-461 ◽  
Author(s):  
Joshua R. Ennen ◽  
Mickey Agha ◽  
Wilfredo A. Matamoros ◽  
Sarah C. Hazzard ◽  
Jeffrey E. Lovich

Our study investigates how factors, such as latitude, productivity, and several environmental variables, influence contemporary patterns of the species richness in North American turtles. In particular, we test several hypotheses explaining broad-scale species richness patterns on several species richness data sets: (i) total turtles, (ii) freshwater turtles only, (iii) aquatic turtles, (iv) terrestrial turtles only, (v) Emydidae, and (vi) Kinosternidae. In addition to spatial data, we used a combination of 25 abiotic variables in spatial regression models to predict species richness patterns. Our results provide support for multiple hypotheses related to broad-scale patterns of species richness, and in particular, hypotheses related to climate, productivity, water availability, topography, and latitude. In general, species richness patterns were positively associated with temperature, precipitation, diversity of streams, coefficient of variation of elevation, and net primary productivity. We also found that North America turtles follow the general latitudinal diversity gradient pattern (i.e., increasing species richness towards equator) by exhibiting a negative association with latitude. Because of the incongruent results among our six data sets, our study highlights the importance of considering phylogenetic constraints and guilds when interpreting species richness patterns, especially for taxonomic groups that occupy a myriad of habitats.


Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 275
Author(s):  
Mariana A. Tsianou ◽  
Maria Lazarina ◽  
Danai-Eleni Michailidou ◽  
Aristi Andrikou-Charitidou ◽  
Stefanos P. Sgardelis ◽  
...  

The ongoing biodiversity crisis reinforces the urgent need to unravel diversity patterns and the underlying processes shaping them. Although taxonomic diversity has been extensively studied and is considered the common currency, simultaneously conserving other facets of diversity (e.g., functional diversity) is critical to ensure ecosystem functioning and the provision of ecosystem services. Here, we explored the effect of key climatic factors (temperature, precipitation, temperature seasonality, and precipitation seasonality) and factors reflecting human pressures (agricultural land, urban land, land-cover diversity, and human population density) on the functional diversity (functional richness and Rao’s quadratic entropy) and species richness of amphibians (68 species), reptiles (107 species), and mammals (176 species) in Europe. We explored the relationship between different predictors and diversity metrics using generalized additive mixed model analysis, to capture non-linear relationships and to account for spatial autocorrelation. We found that at this broad continental spatial scale, climatic variables exerted a significant effect on the functional diversity and species richness of all taxa. On the other hand, variables reflecting human pressures contributed significantly in the models even though their explanatory power was lower compared to climatic variables. In most cases, functional richness and Rao’s quadratic entropy responded similarly to climate and human pressures. In conclusion, climate is the most influential factor in shaping both the functional diversity and species richness patterns of amphibians, reptiles, and mammals in Europe. However, incorporating factors reflecting human pressures complementary to climate could be conducive to us understanding the drivers of functional diversity and richness patterns.


2004 ◽  
Vol 94 (2) ◽  
pp. 111-121 ◽  
Author(s):  
P.A.V. Borges ◽  
V.K. Brown

AbstractThe arthropod species richness of pastures in three Azorean islands was used to examine the relationship between local and regional species richness over two years. Two groups of arthropods, spiders and sucking insects, representing two functionally different but common groups of pasture invertebrates were investigated. The local–regional species richness relationship was assessed over relatively fine scales: quadrats (= local scale) and within pastures (= regional scale). Mean plot species richness was used as a measure of local species richness (= α diversity) and regional species richness was estimated at the pasture level (= γ diversity) with the ‘first-order-Jackknife’ estimator. Three related issues were addressed: (i) the role of estimated regional species richness and variables operating at the local scale (vegetation structure and diversity) in determining local species richness; (ii) quantification of the relative contributions of α and β diversity to regional diversity using additive partitioning; and (iii) the occurrence of consistent patterns in different years by analysing independently between-year data. Species assemblages of spiders were saturated at the local scale (similar local species richness and increasing β-diversity in richer regions) and were more dependent on vegetational structure than regional species richness. Sucking insect herbivores, by contrast, exhibited a linear relationship between local and regional species richness, consistent with the proportional sampling model. The patterns were consistent between years. These results imply that for spiders local processes are important, with assemblages in a particular patch being constrained by habitat structure. In contrast, for sucking insects, local processes may be insignificant in structuring communities.


Sign in / Sign up

Export Citation Format

Share Document