scholarly journals Strength analysis of clavicle fracture fixation devices and fixation techniques using finite element analysis with musculoskeletal force input

2015 ◽  
Vol 53 (8) ◽  
pp. 759-769 ◽  
Author(s):  
Cronskär Marie
2020 ◽  
Vol 58 (5) ◽  
pp. 921-931 ◽  
Author(s):  
Lina Yan ◽  
Joel Louis Lim ◽  
Jun Wei Lee ◽  
Clement Shi Hao Tia ◽  
Gavin Kane O’Neill ◽  
...  

2020 ◽  
Vol 12 (2) ◽  
pp. 601-608
Author(s):  
Tie‐nan Wang ◽  
Bao‐lin Wu ◽  
Rui‐meng Duan ◽  
Ya‐shuai Yuan ◽  
Ming‐jia Qu ◽  
...  

2013 ◽  
Vol 446-447 ◽  
pp. 544-548
Author(s):  
Ying Shi Sun ◽  
Qian Hui Ma ◽  
Liang Xuan

To ensure the safe use of single shear hydraulic lift platform for processing and manufacturing railway vehicles. This paper analyzes the use conditions of single shear hydraulic lift platform, and makes a contact nonlinear finite element analysis on various typical use conditions. The positions of parts subject to danger can be found out through the results of static strength analysis, which finds out the weaknesses and prejudges the failure trend of parts, and which provides guidance for prejudging the faults in actual production and can prevent occurrence of accidents.


2012 ◽  
Vol 538-541 ◽  
pp. 2953-2956
Author(s):  
Ya Li ◽  
Guang Sheng Ren

The static and stability analysis of steel structure were taken according to steel structure work platform’s requirements and structural characteristics in a subway parking space by using the software model which is established by Pro/E software and implanted into the finite element analysis software ANSYS Workbench. The maximum deformation and stress in design load of the steel structure were calculated and the linear stress strength analysis of the key parts was carried out, also both the analysis and testing of the supporting pillar’s stability were performed. The results show that the structure model established by Pro/E and the calculation method are reasonable. Moreover, the calculation results are of high accuracy. The profile size is properly chosen and the structure bearing capacity and deformation meet the design requirements.


Author(s):  
Muhammad Zubair Muis Alie ◽  
Ganding Sitepu ◽  
Juswan Sade ◽  
Wahyuddin Mustafa ◽  
Andi Mursid Nugraha ◽  
...  

This paper discusses the influence of asymmetrically damaged ships on the ultimate hull girder strength. When such damages take place at the asymmetric location of cross sections, not only translation but also inclination of instantaneous neutral axis takes place during the process of the progressive collapse. To investigate this effect, the Finite Element Analysis (FEA) is employed and the damage is assumed in the middle hold. The collision damage is modeled by removing the plate and stiffener elements at the damage region assuming the complete loss of the capacity at the damage part. For the validation results obtained by Finite Element Analysis of the asymmetrically damaged ship hull girder, the simplified method is adopted. The Finite Element method of ultimate strength analysis of a damaged hull girder can be a practical tool for the ship hull girder after damages, which has become one of the functional requirements in IMO Goal Based Ship Construction Standard.


2013 ◽  
Vol 658 ◽  
pp. 335-339
Author(s):  
Somsak Siwadamrongpong ◽  
Supakit Rooppakhun ◽  
Pakorn Burakorn ◽  
Natchaya Murachai

Presently, large passenger vehicles are known to have high risk of an injury due to accident and insufficient of safety regulation. The strength of seat is one of important issues that affect to injury level of passenger. Therefore, suitable structure strength and design of the seat are very important to prevent injuries and passenger life. This study was to evaluate strength of the seat structure for bus according to preliminary safety regulation of Department of Land Transport. Finite element analysis is employed by using a static load. The seat model was simplified and simulated. Stress and impact scenario between seat-back and back of manikin will be investigated. The strength and deflection of the seat will be evaluated. This study is expected to provide the seat model which will be safe and satisfied according to the regulation.


2013 ◽  
Vol 284-287 ◽  
pp. 996-1000 ◽  
Author(s):  
Jong Boon Ooi ◽  
Xin Wang ◽  
Ying Pio Lim ◽  
Ching Seong Tan ◽  
Jee Hou Ho ◽  
...  

Portal axle unit is a gearbox unit installed on every end axles of the vehicle. It is installed to the vehicle to give higher ground clearance to enable vehicle to go over large obstacle when driving in off-road conditions. Shafts must be exceptionally tough and lightweight to improve the overall performance of the portal axle unit. In this paper, the shaft is analyzed in three-dimensional model and the stress of the shaft model is analyzed using finite element analysis (FEA). The FEA result is compared with experimental results.


Sign in / Sign up

Export Citation Format

Share Document