An alternative approach to approximate entropy threshold value (r) selection: application to heart rate variability and systolic blood pressure variability under postural challenge

2015 ◽  
Vol 54 (5) ◽  
pp. 723-732 ◽  
Author(s):  
A. Singh ◽  
B. S. Saini ◽  
D. Singh
1971 ◽  
Vol 33 (1) ◽  
pp. 219-226 ◽  
Author(s):  
Michael Hnatiow

Cardiac rate-variability control and an initial demonstration of systolic blood-pressure variability control using visual feedback of physiological information were examined. Continuous measures of respiration, heart rate, EXG waveform analysis, and systolic blood pressure were obtained for both experimental groups and for yoked controls who saw the same visual display as the experimental Ss. Ss successful at reducing heart-rate variability showed clear changes in the P-R wave relationships of the EKG, indicating possible direct attempts to manipulate heart rate so as to reduce variability. Ss controlling blood-pressure variability who had high heart rates were more successful in reducing variability than those with low rates, possibly because of differential feedback to Ss with high and low heart rates. In addition, apparently as a reaction to E's adjustment of the visual target range, experimental Ss showed decreases in mean blood-pressure levels.


1997 ◽  
Vol 92 (6) ◽  
pp. 543-550 ◽  
Author(s):  
Gary C. Butler ◽  
Shin-Ichi Ando ◽  
John S. Floras

1. There is a substantial non-harmonic or fractal component to the variability of both heart rate and blood pressure in normal subjects. Heart rate is the more complex of these two signals, with respect to the slope, β, of the 1/fβ relationship. In congestive heart failure, heart rate spectral power is attenuated, but the fractal and harmonic components of heart rate and systolic blood pressure variability have not been characterized. 2. Two groups, each comprising 20 men, were studied during 15 min of supine rest and spontaneous respiration: one with functional class II—IV heart failure (age 52 ± 2 years; mean ± SEM) and a second group of healthy men (age 46 ± 2 years). 3. Total spectral power for heart rate was significantly reduced in heart failure (P < 0.02), whereas total spectral power for systolic blood pressure was similar in the two groups. In both heart failure and normal subjects, 65–80% of total spectral power in these two signals displayed fractal characteristics. 4. In heart failure, the slope of the 1/fβ relationship for heart rate was significantly steeper than in normal subjects (1.40 ± 0.08 compared with 1.14 ± 0.05; P < 0.05), indicating reduced complexity of the fractal component of heart rate variability. There was no significant difference in the 1/fβ slope for systolic blood pressure variability between these two groups, but the blood pressure signals were less complex than heart rate variations in both heart failure (2.31 ± 0.15; P < 0.006) and normal subjects (2.47 ± 0.15; P < 0.0001). 5. Parasympathetic nervous system activity, as estimated from heart rate variability was reduced (P < 0.01) in patients with heart failure, whereas trends towards increased sympathetic nervous system activity and decreased non-harmonic power were not significant. 6. The non-harmonic components of cardiac frequency are reduced in heart failure. Non-harmonic power is not attenuated, but the complexity of the heart rate signal is less than in subjects with normal ventricular function. A reduction in parasympathetic modulation appears to contribute to this loss of complexity of heart rate. Consequently, the heart rate signal comes to resemble that of blood pressure. In contrast, the variability and complexity of the systolic blood pressure signal is similar in heart failure and normal subjects. This reduced complexity of heart rate variability may have adverse implications for patients with heart failure.


Author(s):  
Anaclara Michel-Chávez ◽  
Bruno Estañol ◽  
José Antonio Gien-López ◽  
Adriana Robles-Cabrera ◽  
María Elena Huitrado-Duarte ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (2) ◽  
pp. e0148378 ◽  
Author(s):  
Ana Leonor Rivera ◽  
Bruno Estañol ◽  
Horacio Sentíes-Madrid ◽  
Ruben Fossion ◽  
Juan C. Toledo-Roy ◽  
...  

Author(s):  
Boligarla Anasuya ◽  
K. K. Deepak ◽  
Ashok Jaryal

Abstract Yoga has been shown to improve autonomic conditioning in humans, as evidenced by the enhancement of parasym-pathetic activity and baroreflex sensitivity. Therefore, we hypothesized that the experience of yoga may result in adaptation to acute hemodynamic changes. To decipher the long-term effects of yoga on cardiovascular variability, yoga practitioners were compared to yoga-naïve subjects during exposure to –40 mm Hg lower-body negative pressure (LBNP). A comparative study was conducted on 40 yoganaïve subjects and 40 yoga practitioners with an average age of 31.08 ± 7.31 years and 29.93 ± 7.57 years, respectively. Heart rate variability, blood pressure variability, baroreflex sensitivity, and correlation between systolic blood pressure and RR interval were evaluated at rest and during LBNP. In yoga practitioners, the heart rate was lower in supine rest (p = 0.011) and during LBNP (p = 0.043); the pNN50 measure of heart rate variability was higher in supine rest (p = 0.011) and during LBNP (p = 0.034). The yoga practitioners’ standard deviation of successive beat-to-beat blood pressure intervals of systolic blood pressure variability was lower in supine rest (p = 0.034) and during LBNP (p = 0.007), with higher sequence baroreflex sensitivity (p = 0.019) and ~ high-frequency baroreflex sensitivity. Mean systolic blood pressure and RR interval were inversely correlated in the yoga group (r = –0.317, p = 0.049). The yoga practitioners exhibited higher parasympathetic activity and baroreflex sensitivity with lower systolic blood pressure variability, indicating better adaptability to LBNP compared to the yoga-naïve group. Our findings indicate that the yoga module was helpful in conditions of hypovolemia in healthy subjects; it is proposed to be beneficial in clinical conditions associated with sympathetic dominance, impaired barore-flex sensitivity, and orthostatic intolerance.


1998 ◽  
Vol 95 (1) ◽  
pp. 33-42 ◽  
Author(s):  
Isabelle CONSTANT ◽  
Elizabeth VILLAIN ◽  
Dominique LAUDE ◽  
Arlette GIRARD ◽  
Isabelle MURAT ◽  
...  

1.To investigate the influence of heart rate variability on blood pressure variability, short-term variability in heart rate and blood pressure was studied in 10 children with fixed ventricular pacemaker rhythm (80 beats/min). Ten healthy children, in sinus rhythm, served as a reference population. 2.Arterial blood pressure and heart rate were measured continuously using a finger arterial device and an ECG respectively. Power spectra for heart rate and blood pressure (systolic and diastolic) were calculated in both supine and orthostatic positions. In addition, acute changes in blood pressure and heart rate during active standing were studied. 3.Healthy children exhibited considerable heart rate variability, which was slightly more pronounced in the supine position, while children with a fixed ventricular rate had no heart rate variability in either position. 4.Despite the differences in heart rate variability, mean systolic blood pressure and its variability profiles were poorly affected by the suppression of heart rate variability. The lack of autonomic control on the sinus node was associated with a reduction in magnitude of the changes in systolic blood pressure variability induced by orthostatic posture. 5.The suppression of heart rate fluctuations induced a noticeable decrease in diastolic blood pressure fluctuations, which was most conspicuous in the children with fixed cardiac rhythm when in the supine position. This may be explained by the lack of diastolic blood pressure fluctuations, physiologically due to heart rate fluctuations through the run-off effect: the longer the cardiac cycle, the greater the diastolic pressure decay. These results may challenge the classical theory of baroreflex-mediated diastolic blood pressure control described in adult patients. 6.During active standing, the early drop in systolic blood pressure was greater in subjects with fixed ventricular rhythm. A rise in heart rate of 36 beats/min was observed in the healthy subjects in response to active standing. 7.We conclude that in normal children, heart rate fluctuations increase the blood pressure variability rather than buffering it. However, during acute orthostatic stress, the abrupt baroreflex-mediated heart rate rise may partly compensate for the reduction in blood pressure.


Sign in / Sign up

Export Citation Format

Share Document