Micromotion of implant-abutment interfaces (IAI) after loading: correlation of finite element analysis with in vitro performances

2019 ◽  
Vol 57 (5) ◽  
pp. 1133-1144 ◽  
Author(s):  
Zhi Li ◽  
Shanshan Gao ◽  
Hongyu Chen ◽  
Ruiyang Ma ◽  
Tingting Wu ◽  
...  
2020 ◽  
Vol 08 (01) ◽  
pp. 22-31
Author(s):  
Aquib Javaid ◽  
Tarun Kalra ◽  
Manjit Kumar ◽  
Ajay Bansal ◽  
Udey Singh Wirring

Abstract Introduction The overdenture is an alternative to fixed implant-supported prosthesis for its relatively low-cost and in clinical cases where it is impossible to place multiple implants with appropriate number and arrangement in the arch to support a fixed prosthesis. In implant-supported overdentures, many attachments such as bars, ball, and magnets can be used. The anchorage system affects the retention and stability of the overdenture as well as the load transfer to the implant and the bone. The purpose of this study was to evaluate the exerted stresses on implants and implant–abutment interface by comparing different attachment systems used for implant-supported maxillary and mandibular overdentures using finite-element analysis. Materials and Methods Stress distribution in five different models with different attachments were evaluated using finite-element analysis. The studied attachment systems were Ball/O-ring and bar-clip attachments. Three models in mandible were studied, two implants with ball attachments, two implants with bar, and four implants connected with a bar. In maxilla, two models were studied, four implants with ball attachments, and four implants connected with bar. Forces were applied bilaterally on each model in the canine and molar region separately. The forces applied were 35N axially, 70N obliquely, and 10N horizontally. Results The ball attachments models showed the highest amount of stresses on the bone and on the implants in maxilla and mandible. The bar-clip attachment with four implants showed least stress in maxilla as well as in the mandible. The bar on four implants has better stress distribution as compared with the bar on the two implants.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaoning Kang ◽  
Yiming Li ◽  
Yixi Wang ◽  
Yao Zhang ◽  
Dongsheng Yu ◽  
...  

Occlusal trauma caused by improper bite forces owing to the lack of periodontal membrane may lead to bone resorption, which is still a problem for the success of dental implant. In our study, to avoid occlusal trauma, we put forward a hypothesis that a microelectromechanical system (MEMS) pressure sensor is settled on an implant abutment to track stress on the abutment and predict the stress on alveolar bone for controlling bite forces in real time. Loading forces of different magnitudes (0 N–100 N) and angles (0–90°) were applied to the crown of the dental implant of the left central incisor in a maxillary model. The stress distribution on the abutment and alveolar bone were analyzed using a three-dimensional finite element analysis (3D FEA). Then, the quantitative relation between them was derived using Origin 2017 software. The results show that the relation between the loading forces and the stresses on the alveolar bone and abutment could be described as 3D surface equations associated with the sine function. The appropriate range of stress on the implant abutment is 1.5 MPa–8.66 MPa, and the acceptable loading force range on the dental implant of the left maxillary central incisor is approximately 6 N–86 N. These results could be used as a reference for the layout of MEMS pressure sensors to maintain alveolar bone dynamic remodeling balance.


2019 ◽  
Vol 63 (3) ◽  
pp. 303-308 ◽  
Author(s):  
Toshiki Yamazaki ◽  
Natsuko Murakami ◽  
Shizuka Suzuki ◽  
Kazuyuki Handa ◽  
Masaru Yatabe ◽  
...  

2010 ◽  
Vol 28 (6) ◽  
pp. E11 ◽  
Author(s):  
Neil R. Crawford ◽  
Jeffery D. Arnett ◽  
Joshua A. Butters ◽  
Lisa A. Ferrara ◽  
Nikhil Kulkarni ◽  
...  

Different methods have been described by numerous investigators for experimentally assessing the kinematics of cervical artificial discs. However, in addition to understanding how artificial discs affect range of motion, it is also clinically relevant to understand how artificial discs affect segmental posture. The purpose of this paper is to describe novel considerations and methods for experimentally assessing cervical spine postural control in the laboratory. These methods, which include mechanical testing, cadaveric testing, and computer modeling studies, are applied in comparing postural biomechanics of a novel postural control arthroplasty (PCA) device versus standard ball-and-socket (BS) and ball-in-trough (BT) arthroplasty devices. The overall body of evidence from this group of tests supports the conclusion that the PCA device does control posture to a particular lordotic position, whereas BS and BT devices move freely through their ranges of motion.


Author(s):  
Nicole A. DeVries ◽  
Nicole A. Kallemeyn ◽  
Kiran H. Shivanna ◽  
Nicole M. Grosland

Due to the limited availability of human cadaveric specimens, sheep are often utilized for in vitro studies of various spinal disorders and surgical techniques. Understanding the similarities and differences between the human and sheep spine is crucial for constructing a valuable study and interpreting the results. Several studies have identified the anatomical similarities between the sheep and human spine; however these studies have been limited to quantifying the anatomic dimensions as opposed to the biomechanical responses [1–2]. Although anatomical similarities are important, biomechanical correspondence is imperative for studying the effects of disorders, surgical techniques, and implant designs. Studies by Wilke and colleagues [3] and Clarke et al. [4] have focused on experimental biomechanics of the sheep cervical functional spinal units (FSUs).


Sign in / Sign up

Export Citation Format

Share Document