experimental biomechanics
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 2)

H-INDEX

3
(FIVE YEARS 1)

Author(s):  
Bruno Agostinho Hernandez ◽  
Harinderjit S Gill ◽  
Sabina Gheduzzi

Bone cement is often used, in experimental biomechanics, as a potting agent for vertebral bodies (VB). As a consequence, it is usually included in finite element (FE) models to improve accuracy in boundary condition settings. However, bone cement material properties are typically assigned to these models based on literature data obtained from specimens created under conditions which often differ from those employed for cement end caps. These discrepancies can result in solids with different material properties from those reported. Therefore, this study aimed to analyse the effect of assigning different mechanical properties to bone cement in FE vertebral models. A porcine C2 vertebral body was potted in bone cement end caps, [Formula: see text]CT scanned, and tested in compression. DIC was performed on the anterior surface of the specimen to monitor the displacement. Specimen stiffness was calculated from the load-displacement output of the materials testing machine and from the machine load output and average displacement measured by DIC. Fifteen bone cement cylinders with dimensions similar to the cement end caps were produced and subjected to the same compression protocol as the vertebral specimen and average stiffness and Young moduli were estimated. Two geometrically identical vertebral body FE models were created from the [Formula: see text]CT images, the only difference residing in the values assigned to bone cement material properties: in one model these were obtained from the literature and in the other from the cylindrical cement samples previously tested. The average Youngs modulus of the bone cement cylindrical specimens was 1177 ± 3 MPa, considerably lower than the values reported in the literature. With this value, the FE model predicted a vertebral specimen stiffness 3% lower than that measured experimentally, while when using the value most commonly reported in similar studies, specimen stiffness was overestimated by 150%.


2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Jeffrey W. Holmes

This paper is an invited perspective written in association with the awarding of the 2018 American Society of Mechanical Engineers Van C. Mow Medal. Inspired by Professor Mow's collaboration with Professor Michael Lai and the role mathematical modeling played in their work on cartilage biomechanics, this article uses our group's work on myocardial infarct healing as an example of the potential value of models in modern experimental biomechanics. Focusing more on the thought process and lessons learned from our studies on infarct mechanics than on the details of the science, this article argues that the complexity of current research questions and the wealth of information already available about almost any cell, tissue, or organ should change how we approach problems and design experiments. In particular, this paper proposes that constructing a mathematical or computational model is now in many cases a critical prerequisite to designing scientifically useful, informative experiments.


Sign in / Sign up

Export Citation Format

Share Document