scholarly journals A quantitative model of relation between respiratory-related blood pressure fluctuations and the respiratory sinus arrhythmia

2018 ◽  
Vol 57 (5) ◽  
pp. 1069-1078 ◽  
Author(s):  
Teodor Buchner
2019 ◽  
Vol 127 (5) ◽  
pp. 1386-1402 ◽  
Author(s):  
E. Benjamin Randall ◽  
Anna Billeschou ◽  
Louise S. Brinth ◽  
Jesper Mehlsen ◽  
Mette S. Olufsen

The Valsalva maneuver (VM) is a diagnostic protocol examining sympathetic and parasympathetic activity in patients with autonomic dysfunction (AD) impacting cardiovascular control. Because direct measurement of these signals is costly and invasive, AD is typically assessed indirectly by analyzing heart rate and blood pressure response patterns. This study introduces a mathematical model that can predict sympathetic and parasympathetic dynamics. Our model-based analysis includes two control mechanisms: respiratory sinus arrhythmia (RSA) and the baroreceptor reflex (baroreflex). The RSA submodel integrates an electrocardiogram-derived respiratory signal with intrathoracic pressure, and the baroreflex submodel differentiates aortic and carotid baroreceptor regions. Patient-specific afferent and efferent signals are determined for 34 control subjects and 5 AD patients, estimating parameters fitting the model output to heart rate data. Results show that inclusion of RSA and distinguishing aortic/carotid regions are necessary to model the heart rate response to the VM. Comparing control subjects to patients shows that RSA and baroreflex responses are significantly diminished. This study compares estimated parameter values from the model-based predictions to indices used in clinical practice. Three indices are computed to determine adrenergic function from the slope of the systolic blood pressure in phase II [ α (a new index)], the baroreceptor sensitivity ( β), and the Valsalva ratio ( γ). Results show that these indices can distinguish between normal and abnormal states, but model-based analysis is needed to differentiate pathological signals. In summary, the model simulates various VM responses and, by combining indices and model predictions, we study the pathologies for 5 AD patients. NEW & NOTEWORTHY We introduce a patient-specific model analyzing heart rate and blood pressure during a Valsalva maneuver (VM). The model predicts autonomic function incorporating the baroreflex and respiratory sinus arrhythmia (RSA) control mechanisms. We introduce a novel index ( α) characterizing sympathetic activity, which can distinguish control and abnormal patients. However, we assert that modeling and parameter estimation are necessary to explain pathologies. Finally, we show that aortic baroreceptors contribute significantly to the VM and RSA affects early VM.


2001 ◽  
Vol 280 (5) ◽  
pp. H2336-H2341 ◽  
Author(s):  
Fumihiko Yasuma ◽  
Jun-Ichiro Hayano

Respiratory sinus arrhythmia (RSA) may serve to enhance pulmonary gas exchange efficiency by matching pulmonary blood flow with lung volume within each respiratory cycle. We examined the hypothesis that RSA is augmented as an active physiological response to hypercapnia. We measured electrocardiograms and arterial blood pressure during progressive hypercapnia in conscious dogs that were prepared with a permanent tracheostomy and an implanted blood pressure telemetry unit. The intensity of RSA was assessed continuously as the amplitude of respiratory fluctuation of heart rate using complex demodulation. In a total of 39 runs of hypercapnia in 3 dogs, RSA increased by 38 and 43% of the control level when minute ventilation reached 10 and 15 l/min, respectively ( P < 0.0001 for both), and heart rate and mean arterial pressure showed no significant change. The increases in RSA were significant even after adjustment for the effects of increased tidal volume, respiratory rate, and respiratory fluctuation of arterial blood pressure ( P < 0.001). These observations indicate that increased RSA during hypercapnia is not the consequence of altered autonomic balance or respiratory patterns and support the hypothesis that RSA is augmented as an active physiological response to hypercapnia.


2010 ◽  
Vol 298 (5) ◽  
pp. H1588-H1599 ◽  
Author(s):  
P. Y. W. Sin ◽  
D. C. Galletly ◽  
Y. C. Tzeng

Respiratory sinus arrhythmia (RSA) is classically described as a vagally mediated increase and decrease in heart rate concurrent with inspiration and expiration, respectively. However, although breathing frequency is known to alter this temporal relationship, the precise nature of this phase dependency and its relationship to blood pressure remains unclear. In 16 subjects we systematically examined the temporal relationships between respiration, RSA, and blood pressure by graphically portraying cardiac interval (R-R) and systolic blood pressure (SBP) variations as a function of the respiratory cycle (pattern analysis), during incremental stepwise paced breathing. The principal findings were 1) the time interval between R-R maximum and expiration onset remained the same (∼2.5–3.0 s) irrespective of breathing frequency ( P = 0.10), whereas R-R minimum progressively shifted from expiratory onset into midinspiration with slower breathing ( P < 0.0001); 2) there is a clear qualitative distinction between pre- versus postinspiratory cardiac acceleration during slow (0.10 Hz) but not fast (0.20 Hz) breathing; 3) the time interval from inspiration onset to SBP minimum ( P = 0.16) and from expiration onset to SBP maximum ( P = 0.26) remained unchanged across breathing frequencies; 4) SBP maximum and R-R maximum maintained an unchanged temporal alignment of ∼1.1 s irrespective of breathing frequency ( P = 0.84), whereas the alignment between SBP minimum and R-R minimum was inconstant ( P > 0.0001); and 5) β1-adrenergic blockade did not influence the respiration-RSA relationships or distinct RSA patterns observed during slow breathing, suggesting that temporal dependencies associated with alterations in breathing frequency are unrelated to cardiac sympathetic modulation. Collectively, these results illustrate nonlinear respiration-RSA-blood pressure relationships that may yield new insights to the fundamental mechanism of RSA in humans.


2018 ◽  
Vol 314 (6) ◽  
pp. R761-R769 ◽  
Author(s):  
Michal Javorka ◽  
Fatima El-Hamad ◽  
Barbora Czippelova ◽  
Zuzana Turianikova ◽  
Jana Krohova ◽  
...  

The objective of this study was to determine the response of heart rate and blood pressure variability (respiratory sinus arrhythmia, baroreflex sensitivity) to orthostatic and mental stress, focusing on causality and the mediating effect of respiration. Seventy-seven healthy young volunteers (46 women, 31 men) aged 18.4 ± 2.7 yr underwent an experimental protocol comprising supine rest, 45° head-up tilt, recovery, and a mental arithmetic task. Heart rate variability and blood pressure variability were analyzed in the time and frequency domain and modeled as a multivariate autoregressive process where the respiratory volume signal acted as an external driver. During head-up tilt, tidal volume increased while respiratory rate decreased. During mental stress, breathing rate increased and tidal volume was elevated slightly. Respiratory sinus arrhythmia decreased during both interventions. Baroreflex function was preserved during orthostasis but was decreased during mental stress. While sex differences were not observed during baseline conditions, cardiovascular response to orthostatic stress and respiratory response to mental stress was more prominent in men compared with women. The respiratory response to the mental arithmetic tasks was more prominent in men despite a significantly higher subjectively perceived stress level in women. In conclusion, respiration shows a distinct response to orthostatic versus mental stress, mediating cardiovascular variability; it needs to be considered for correct interpretation of heart rate and blood pressure phenomena.


2008 ◽  
Vol 294 (3) ◽  
pp. H1481-H1489 ◽  
Author(s):  
Kiyoshi Kotani ◽  
Kiyoshi Takamasu ◽  
Yasuhiko Jimbo ◽  
Yoshiharu Yamamoto

The purpose of this study is to evaluate the multiple effects of respiration on cardiovascular variability in different postures, by analyzing respiratory sinus arrhythmia (RSA) and respiratory-related blood pressure (BP) variations for systolic BP (SBP), diastolic BP (DBP), and pulse pressure (PP) in the respiratory-phase domain. The measurements were conducted for 420 s on healthy humans in the sitting and standing positions, while the subjects were continuously monitored for heart rate and BP variability and instantaneous lung volume. The waveforms of RSA and respiratory-related BP variations were extracted as a function of the respiratory phase. In the standing position, the waveforms of the BP variations for SBP, DBP, and PP show their maxima at around the end of expiration (π rad) and the minima at around the end of inspiration (2 π rad), while the waveform of RSA is delayed by ∼0.35 π rad compared with the BP waveforms. On the other hand, in the sitting position, the phase of the DBP waveform (1.69 π rad) greatly and significantly ( P < 0.01) differs from that in the standing position (1.20 π rad). Also, the phase of PP is delayed and that of RSA is advanced in the sitting position ( P < 0.01). In particular, the phase shift of the DBP waveform is sufficiently large to alter whole hemodynamic fluctuations, affecting the amplitudes of SBP and PP variations. We conclude that the postural change associated with an altered autonomic balance affects not only the amplitude of RSA, but also the phases of RSA and BP variations in a complicated manner, and the respiratory-phase domain analysis used in this study is useful for elucidating the dynamic mechanisms of RSA.


Author(s):  
Paulina Lubocka ◽  
Robert Sabiniewicz ◽  
Klaudia Suligowska ◽  
Tomasz Zdrojewski

Background: The study was conducted to investigate the implications of anthropometry in school-aged children on the degree of respiratory sinus arrhythmia observed in clinical settings. Methods: In a cohort study, 626 healthy children (52% male) aged 10.8 ± 0.5 years attending primary school in a single town underwent a 12-lead electrocardiogram coupled with measurements of height, weight and blood pressure. Indices of respiratory sinus arrhythmia (pvRSA, RMSSD, RMSSDc) were derived from semi-automatic measurements of RR intervals. Height, weight, BMI, blood pressure as well as waist and hip circumferences were compared between subjects with rhythmic heart rate and respiratory sinus arrhythmia, and correlations between indices of sinus arrhythmia and anthropometry were investigated. Results: Respiratory sinus arrhythmia was recognized in 43% of the participants. Subjects with sinus arrhythmia had lower heart rate (p < 0.001), weight (p = 0.009), BMI (p = 0.005) and systolic (p = 0.018) and diastolic (p = 0.004) blood pressure. There were important inverse correlations of heart rate and indices of sinus arrhythmia (r = −0.52 for pvRSA and r = −0.58 for RMSSD), but not the anthropometry. Conclusion: Lower prevalence of respiratory sinus arrhythmia among children with overweight and obesity is a result of higher resting heart rate observed in this population.


2021 ◽  
Vol 8 ◽  
Author(s):  
Paulina Lubocka ◽  
Robert Sabiniewicz

Background: Respiratory sinus arrhythmia (RSA) is associated with better health in children.Aim: The study was conducted to analyze the trajectory of RSA in 10-year-olds.Methods: A follow-up study on 120 healthy children (62 boys) aged 10.7 ± 0.5 years consisted of a standard 12-lead electrocardiogram, measurements of height, weight and blood pressure. The protocol was repeated after 3 years. Assessment of RSA based on semi-automatic measurements of RR intervals included: the difference between the longest and shortest RR interval duration (pvRSA), the root mean square of differences between successive RR intervals (RMSSD), the standard deviation of the RR interval length (SDNN) and their equivalents corrected for heart rate (RMSSDc and SDNNc).Results: A the first visit 61.7% of children presented with RSA; 51.7% 3 years later. 23.3% of them had RSA only on the first examination; 13.3% only on the second one. The pvRSA, RMSSD, and SDNN measured in 2019 did not differ significantly from their 2016 equivalents (p &gt; 0.05). The decline in RSA defined by RMSSD was noted in 52.5% of children and in 54.2% when defined by SDNN. The corrected values decreased in 68.3 and 64.2% of the participants for RMSSDc and SDNNc, respectively. The students with RSA at both visits had lower heart rate (p &lt; 0.001) and systolic blood pressure (p = 0.010) compared to those with rhythmic electrocardiograms.Conclusions: RSA in children is changeable, though its measurable indices should be adjusted to heart rate.


Sign in / Sign up

Export Citation Format

Share Document