scholarly journals An effective simulation- and measurement-based workflow for enhanced diagnostics in rhinology

Author(s):  
Moritz Waldmann ◽  
Alice Grosch ◽  
Christian Witzler ◽  
Matthias Lehner ◽  
Odo Benda ◽  
...  

AbstractPhysics-based analyses have the potential to consolidate and substantiate medical diagnoses in rhinology. Such methods are frequently subject to intense investigations in research. However, they are not used in clinical applications, yet. One issue preventing their direct integration is that these methods are commonly developed as isolated solutions which do not consider the whole chain of data processing from initial medical to higher valued data. This manuscript presents a workflow that incorporates the whole data processing pipeline based on a environment. Therefore, medical image data are fully automatically pre-processed by machine learning algorithms. The resulting geometries employed for the simulations on high-performance computing systems reach an accuracy of up to 99.5% compared to manually segmented geometries. Additionally, the user is enabled to upload and visualize 4-phase rhinomanometry data. Subsequent analysis and visualization of the simulation outcome extend the results of standardized diagnostic methods by a physically sound interpretation. Along with a detailed presentation of the methodologies, the capabilities of the workflow are demonstrated by evaluating an exemplary medical case. The pipeline output is compared to 4-phase rhinomanometry data. The comparison underlines the functionality of the pipeline. However, it also illustrates the influence of mucosa swelling on the simulation.

Author(s):  
Andrzej Wilczyński ◽  
Adrian Widłak

Data integration and fast effective data processing are the primary challenges in today’s high-performance computing systems used for Big Data processing and analysis in practical scenarios. Blockchain (BC) is a hot, modern technology that ensures high security of data processes stored in highly distributed networks and ICT infrastructures. BC enables secure data transfers in distributed systems without the need for all operations and processes in the network to be initiated and monitored by any central authority (system manager). This paper presents the background of a generic architectural model of a BC system and explains the concept behind the consensus models used in BC transactions. Security is the main aspect of all defined operations and BC nodes. The paper presents also specific BC use cases to illustrate the performance of the system in practical scenarios..


Author(s):  
Nikolay Kondratyuk ◽  
Vsevolod Nikolskiy ◽  
Daniil Pavlov ◽  
Vladimir Stegailov

Classical molecular dynamics (MD) calculations represent a significant part of the utilization time of high-performance computing systems. As usual, the efficiency of such calculations is based on an interplay of software and hardware that are nowadays moving to hybrid GPU-based technologies. Several well-developed open-source MD codes focused on GPUs differ both in their data management capabilities and in performance. In this work, we analyze the performance of LAMMPS, GROMACS and OpenMM MD packages with different GPU backends on Nvidia Volta and AMD Vega20 GPUs. We consider the efficiency of solving two identical MD models (generic for material science and biomolecular studies) using different software and hardware combinations. We describe our experience in porting the CUDA backend of LAMMPS to ROCm HIP that shows considerable benefits for AMD GPUs comparatively to the OpenCL backend.


2018 ◽  
Vol 88 ◽  
pp. 693-695 ◽  
Author(s):  
Yulei Wu ◽  
Yang Xiang ◽  
Jingguo Ge ◽  
Peter Muller

Sign in / Sign up

Export Citation Format

Share Document