scholarly journals A dataset of laryngeal endoscopic images with comparative study on convolution neural network-based semantic segmentation

Author(s):  
Max-Heinrich Laves ◽  
Jens Bicker ◽  
Lüder A. Kahrs ◽  
Tobias Ortmaier
2020 ◽  
Author(s):  
Taweesak Emsawas ◽  
Tsukasa Kimura ◽  
Ken-ichi Fukui ◽  
Masayuki Numao

Abstract Brain-Computer Interface (BCI) is a communication tool between humans and systems using electroencephalography (EEG) to predict certain cognitive state aspects, such as attention or emotion. For brainwave recording, there are many types of acquisition devices created for different purposes. The wet system conducts the recording with electrode gel and can obtain high-quality brainwave signals, while the dry system expressly proposes the practical and ease of use. In this paper, we study a comparative study of wet and dry systems using two cognitive tasks: attention and music-emotion. The 3-back task is used as an assessment to measure attention and working memory in attention studies. Comparatively, the music-emotion experiments are used to predict the emotion according to the subject's questionnaires. Our analysis shows the similarities and differences between dry and wet electrodes by calculating the statistical values and frequency bands. Besides, we further study the relative characteristics by conducting the classification experiments. We proposed the end-to-end models of EEG classification, which are constructed by combining EEG-based feature extractors and classification networks. A deep convolution neural network (Deep ConvNet) and a shallow convolution neural network (Shallow ConvNet) were applied as the feature extractor of temporal and spatial filtering from raw EEG signals. The extracted feature is then forwardly conveyed to a long short-term memory ( LSTM ) to learn the dependencies of convolved features and classify attention states or emotional states. Additionally, transfer learning was utilized to improve the performance of the dry system by using transferred knowledge from the wet system. We applied the model not only on our dataset but also on the existing dataset to verify the model performance compared with the baseline techniques and the-state-of-the-art models. Using our proposed model, the result shows the significant differences between accuracy and chance level in attention classification (92.0%, S.D. 6.8%) and SEED dataset's emotion classification (75.3%, S.D. 9.3%).


2020 ◽  
Vol 1637 ◽  
pp. 012138
Author(s):  
Guitang Wang ◽  
Ziyu Wang ◽  
Yongbin Chen ◽  
Guozhen Wang ◽  
Jianqiang Chen

Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1541
Author(s):  
Xavier Alphonse Inbaraj ◽  
Charlyn Villavicencio ◽  
Julio Jerison Macrohon ◽  
Jyh-Horng Jeng ◽  
Jer-Guang Hsieh

One of the fundamental advancements in the deployment of object detectors in real-time applications is to improve object recognition against obstruction, obscurity, and noises in images. In addition, object detection is a challenging task since it needs the correct detection of objects from images. Semantic segmentation and localization are an important module to recognizing an object in an image. The object localization method (Grad-CAM++) is mostly used by researchers for object localization, which uses the gradient with a convolution layer to build a localization map for important regions on the image. This paper proposes a method called Combined Grad-CAM++ with the Mask Regional Convolution Neural Network (GC-MRCNN) in order to detect objects in the image and also localization. The major advantage of proposed method is that they outperform all the counterpart methods in the domain and can also be used in unsupervised environments. The proposed detector based on GC-MRCNN provides a robust and feasible ability in detecting and classifying objects exist and their shapes in real time. It is found that the proposed method is able to perform highly effectively and efficiently in a wide range of images and provides higher resolution visual representation than existing methods (Grad-CAM, Grad-CAM++), which was proven by comparing various algorithms.


Author(s):  
Mardin A. Anwer ◽  
Shareef M. Shareef ◽  
Abbas M. Ali

<span>Classifying and finding type of individual vehicles within an accident image are considered difficult problems. This research concentrates on accurately classifying and recognizing vehicle accidents in question. The aim to provide a comparative analysis of vehicle accidents. A number of network topologies are tested to arrive at convincing results and a variety of matrices are used in the evaluation process to identify the best networks. The best two networks are used with faster recurrent convolution neural network (Faster RCNN) and you only look once (YOLO) to determine which network will identifiably detect the location and type of the vehicle. In addition, two datasets are used in this research. In consequence, experiment results show that MobileNetV2 and ResNet50 have accomplished higher accuracy compared to the rest of the models, with 89.11% and 88.45% for the GAI dataset as well as 88.72% and 89.69% for KAI dataset, respectively. The findings reveal that the ResNet50 base network for YOLO achieved higher accuracy than MobileNetV2 for YOLO, ResNet50 for Faster RCNN with 83%, 81%, and 79% for GAI dataset and 79%, 78% and 74% for KAI dataset.</span>


Sign in / Sign up

Export Citation Format

Share Document