In vitro germplasm conservation of Podophyllum peltatum L. under slow growth conditions

2009 ◽  
Vol 46 (1) ◽  
pp. 22-27 ◽  
Author(s):  
Hemant Lata ◽  
Rita M. Moraes ◽  
Bianca Bertoni ◽  
Ana M. S. Pereira
2021 ◽  
Vol 13 (12) ◽  
pp. 6743
Author(s):  
Veerala Priyanka ◽  
Rahul Kumar ◽  
Inderpreet Dhaliwal ◽  
Prashant Kaushik

Germplasm is a valuable natural resource that provides knowledge about the genetic composition of a species and is crucial for conserving plant diversity. Germplasm protection strategies not only involve rescuing plant species threatened with extinction, but also help preserve all essential plants, on which rests the survival of all organisms. The successful use of genetic resources necessitates their diligent collection, storage, analysis, documentation, and exchange. Slow growth cultures, cryopreservation, pollen and DNA banks, botanical gardens, genetic reserves, and farmers’ fields are a few germplasm conservation techniques being employed. However, the adoption of in-vitro techniques with any chance of genetic instability could lead to the destruction of the entire substance, but the improved understanding of basic regeneration biology would, in turn, undoubtedly increase the capacity to regenerate new plants, thus expanding selection possibilities. Germplasm conservation seeks to conserve endangered and vulnerable plant species worldwide for future proliferation and development; it is also the bedrock of agricultural production.


2011 ◽  
pp. 391-403 ◽  
Author(s):  
M. Beruto ◽  
S. Rinino ◽  
A. Bisignano ◽  
M. Fibiani

2014 ◽  
pp. 303-308 ◽  
Author(s):  
H. Lata ◽  
S. Chandra ◽  
Y.H. Wang ◽  
M.A. ElSohly ◽  
I.A. Khan

2021 ◽  
Author(s):  
Awadhesh Kumar Mishra ◽  
Kavindra Nath Tiwari ◽  
Pallavi Mishra ◽  
Sunil Kumar Mishra ◽  
Shailesh Kumar Tiwari

Abstract An efficient encapsulation and germplasm conservation protocol were developed for Nyctanthes arbor-tristis L. In this study the gel matrix containing three percent sodium alginate (SA) and 100 mM calcium chloride (CaCl2. 2H2O) was found best for the formation of encapsulated seeds from node explant of this economically valuable species. The viability of encapsulated seeds and shoot sprouting potential was optimized. Encapsulated seeds stored at 4ºC and 24 ºC maintained its viability up to 90 days and showed sprouting potential 42.89±6.04 and 33.53±7.15 percent respectively. Node explant maintain under slow growth condition up to 180 days on one-eighth (1/8th) strength MS medium supplemented with 0.5 percent sucrose found suitable to maintain high span viability percent (40.28±2.04) with average number of shoots/ node (1.61±0.28) and shoots length (1.12±0.32 cm) respectively. One-eighth (1/8th) strength MS medium supplemented with 0.5 percent sucrose and enriched with 0.5 mg/l abscisic acid (ABA) prolonged the viability up to 40.36±1.01 percent of explant. The best rooting response was achieved on half (½) strength MS medium enriched with 4 mg/l indole-3-acetic acid (IAA). The rooted plant shows 65 percent survivability in open field condition. The true-to-type clonal fidelity assessment of tissue culture recovered acclimated plants with start codon targeted (SCoT) primer profile shows same banding mobility patterns as with source parent mother plant. The maximum banding profile is monomorphic and consistent. Hence on this basis it confirmed the true-to-type clonal stability among them. The protocols display the novel method for conservation of this species under in-vitro condition and facilitate easy exchange of plant germplasm.


Author(s):  
Danuta Kucharska ◽  
Robert Maciorowski ◽  
Małgorzata Kunka ◽  
Angelika Niewiadomska-Wnuk

Short storage of in vitro cultures under slow-growth conditions is included in the commercial large-scale micropropagation process. It is dictated by the organizational scheme that provides temporary stop multiplication of shoots for some months. To avoid subculturing to fresh media every 4 weeks, which is obligatory for gooseberry, they can be kept in conditions that protect them from ageing, by slowing down their metabolism. To develop a rational schedule of gooseberry micropropagation, two experiments were used to adopt a temperature and length of time for storage. The best results were obtained with storage conditions at 2 °C for two or four months for proliferating cultures. Under these conditions, the percentage of necrotic shoots was low (< 10%), and shoot proliferation in the subsequent passages was at a level similar to proliferation cultures incubated in the growth room and sub-cultured monthly. The rate of shoots > 1 cm was higher than in the control in the growth room. Storage at 4 °C increased the probability of necrotic shoots up to 80% and decreased the number of all shoots and shoots > 1 cm in subsequent passages.


Sign in / Sign up

Export Citation Format

Share Document