agricultural biodiversity
Recently Published Documents


TOTAL DOCUMENTS

148
(FIVE YEARS 31)

H-INDEX

18
(FIVE YEARS 1)

Author(s):  
Luciana Andréa Da Costa Soares ◽  
Jéssica Daniele Lustosa Da Silva ◽  
Verônica Brito Da Silva ◽  
Clemilton Da Silva Ferreira ◽  
Antonia Maria de Cassia Batista de Sousa ◽  
...  

2021 ◽  
Vol 13 (12) ◽  
pp. 6743
Author(s):  
Veerala Priyanka ◽  
Rahul Kumar ◽  
Inderpreet Dhaliwal ◽  
Prashant Kaushik

Germplasm is a valuable natural resource that provides knowledge about the genetic composition of a species and is crucial for conserving plant diversity. Germplasm protection strategies not only involve rescuing plant species threatened with extinction, but also help preserve all essential plants, on which rests the survival of all organisms. The successful use of genetic resources necessitates their diligent collection, storage, analysis, documentation, and exchange. Slow growth cultures, cryopreservation, pollen and DNA banks, botanical gardens, genetic reserves, and farmers’ fields are a few germplasm conservation techniques being employed. However, the adoption of in-vitro techniques with any chance of genetic instability could lead to the destruction of the entire substance, but the improved understanding of basic regeneration biology would, in turn, undoubtedly increase the capacity to regenerate new plants, thus expanding selection possibilities. Germplasm conservation seeks to conserve endangered and vulnerable plant species worldwide for future proliferation and development; it is also the bedrock of agricultural production.


2021 ◽  
Author(s):  
Radu-Liviu Sumalan ◽  
Sorin-Ion Ciulca ◽  
Renata-Maria Sumalan ◽  
Sorina Popescu

Crop diversity of vegetable species is threatened by the current homogenization of agricultural production systems due to specialization of plant breeders and increasing globalization in the seed sector. With the onset of modern agriculture, most traditional vegetable cultivars were replaced by highly productive and often genetically uniform commercial breeds and hybrids. This led to the loss of landraces, especially in countries with a super-intensive agriculture. The agricultural biodiversity erosion represents a huge risk for food safety and security. Vegetable landraces are associated with the cultural heritage of their place of origin being adapted to local agro-ecological areas and are more resilient to environmental stress than commercial cultivars. The chapter aim to highlight the importance of keeping and using vegetable landraces as valuable sources of genes for traditional farmers, but also for future breeding processes. We analyze the historical role of landraces, genetic diversity, high physiological adaptability to specific local conditions in association with traditional farming systems, as well as the breeding perspectives and evaluation of genetic diversity based on molecular markers.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1031
Author(s):  
Eva Martínez-Ispizua ◽  
Mary-Rus Martínez-Cuenca ◽  
José Ignacio Marsal ◽  
María José Díez ◽  
Salvador Soler ◽  
...  

Sweet pepper is one of the most important economic fruits with nutritional attributes. In this sense, the nutraceutical value of consumed products is a major concern nowadays so the content of some bioactive compounds and antioxidants (phenols, ascorbic acid, lycopene, carotenoids, chlorophylls, and antioxidant activity) was monitored in 18 sweet pepper landraces at two maturity stages (green and red). All the traits except chlorophylls significantly increased in red fruits (between 1.5- and 2.3-fold for phenols, ascorbic acid, and 2-2-diphenyl-1-picrylhydrazyl (DPPH) inhibition activity, 4.8-fold for carotenoid and 27.4-fold for lycopene content), which suggests that ripening is key for obtaining desired fruit quality. Among landraces, P-44 in green fruits is highlighted for its content in carotenoids, chlorophylls, phenols, and ascorbic acid, and P-46 for its antioxidant capacity and lycopene content. Upon maturity, P-48, P-44, and P-41 presented higher levels of phenols and lycopene, and P-39 of phenols, carotenoid, and DPPH. This work reflects a wide variability in the 18 pepper landraces at bioactive compounds concentration and in relation to fruit ripeness. The importance of traditional landraces in terms of organoleptic properties is emphasized as they are the main source of agricultural biodiversity today and could be helpful for breeders to develop new functional pepper varieties.


AMBIO ◽  
2021 ◽  
Author(s):  
L. Jamila Haider ◽  
Maja Schlüter ◽  
Carl Folke ◽  
Belinda Reyers

AbstractThe interdependence of social and ecological processes is broadly acknowledged in the pursuit to enhance human wellbeing and prosperity for all. Yet, development interventions continue to prioritise economic development and short-term goals with little consideration of social-ecological interdependencies, ultimately undermining resilience and therefore efforts to deliver development outcomes. We propose and advance a coevolutionary perspective for rethinking development and its relationship to resilience. The perspective rests on three propositions: (1) social-ecological relationships coevolve through processes of variation, selection and retention, which are manifest in practices; (2) resilience is the capacity to filter practices (i.e. to influence what is selected and retained); and (3) development is a coevolutionary process shaping pathways of persistence, adaptation or transformation. Development interventions affect and are affected by social–ecological relationships and their coevolutionary dynamics, with consequences for resilience, often with perverse outcomes. A coevolutionary approach enables development interventions to better consider social–ecological interdependencies and dynamics. Adopting a coevolutionary perspective, which we illustrate with a case on agricultural biodiversity, encourages a radical rethinking of how resilience and development are conceptualised and practiced across global to local scales.


2021 ◽  
Vol 29 (2) ◽  
pp. 167-176
Author(s):  
Xiaoming Zheng ◽  
Qingwen Yang ◽  

Sign in / Sign up

Export Citation Format

Share Document