Evaluation of the possible slip surface of a highly heterogeneous rock slope using dynamic reduction method

2018 ◽  
Vol 15 (3) ◽  
pp. 672-684 ◽  
Author(s):  
Guo-qing Chen ◽  
Run-qiu Huang ◽  
Feng-shou Zhang ◽  
Zhen-fei Zhu ◽  
Yu-chuan Shi ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Ruili Lu ◽  
Wei Wei ◽  
Kaiwei Shang ◽  
Xiangyang Jing

In order to study the failure mechanism and assess the stability of the inlet slope of the outlet structure of Lianghekou Hydropower station, the strength reduction method considering the ubiquitous joint model is proposed. Firstly, two-dimension numerical models are built to investigate the influence of the dilation angle of ubiquitous joints, mesh discretization, and solution domain size on the slope stability. It is found that the factor of safety is insensitive to the dilation angle of ubiquitous joints and the solution domain size but sensitive to the mesh discretization when the number of elements less than a certain threshold. Then, a complex three-dimension numerical model is built to assess the stability of the inlet slope of the outlet structure of Lianghekou Hydropower station. During the strength reduction procedure, the progressive failure process and the final failure surface of the slope are obtained. Furthermore, the comparison of factors of safety obtained from strength reduction method and analytical solutions indicates that the effect of vertical side boundaries plays an important role in the stability of jointed rock slope, and the cohesive force is the main contribution to the resistant force of vertical side boundaries.


2011 ◽  
Vol 243-249 ◽  
pp. 2271-2275
Author(s):  
Shu Yu ◽  
Li Hong Chen ◽  
Ze Ping Xu ◽  
Ning Chen

In the design process of the earth-rock dam, the slope stability problem was always focused on. The shear strength of rockfill in the earth-rock dam had strong nonlinear characteristics. The characteristic directly affected the factor of safety (FOS) of stability of dam slope and the determination of the critical slip surface. The shear strength parameter of rockfill was related to the minimum principal stress σ3 closely. And the value of σ3 had close relationship with the deformation characteristics of filling material and the process of dam filling etc. Strength reduction method has been widely used in solving the FOS of slope stability, and this method has the advantage on the searching of the critical slip surface. Combining the deformation and stress analysis of earth-rockfill dam filling process and the strength reduction method, this paper proposes a comprehensive method of dam slope stability analysis.


2011 ◽  
Vol 50-51 ◽  
pp. 568-572 ◽  
Author(s):  
Nu Wen Xu ◽  
Chu Nan Tang ◽  
Chun Sha ◽  
Ru Lin Zhang

This research applied a numerical code, RFPA2D (Realistic Failure Process Analysis) to evaluate the stability and investigate the failure mode of the high rock slope during excavations based on Strength Reduction Method (SRM). The corresponding shapes and positions of the potential slip surfaces are rationally simulated in different stages, and the related safety coefficients are obtained, which agrees well with the allowable minimum safety factors of the slope. The numerical results show that the safety coefficient drops from 1.25 at the natural state to 1.09 after excavation, and then increases to 1.35 after slope reinforcement. Moreover, the potential slip surface of the left bank moves into deep rock mass after taking support measures, which demonstrates the reinforcement is reasonable and efficient. The study shows that cracks and faults will cause crucial influences on the slope stability, and RFPA2D is a good tool to directly display the potential slip surface of the slope, which will offer valuable guidance for bolt support.


2013 ◽  
Vol 368-370 ◽  
pp. 1774-1780
Author(s):  
Shi Yan ◽  
Hai Tao Du ◽  
Qi Le Yu ◽  
Han Yan

This paper focuses on stability analysis of an artificial rock mass slope by a nonlinear finite element method (FEM). For a long time, rock slope stability problem is always an important research issue in the field of geotechnical engineering, which is related to human life and property safety as well as engineering security and efficiency. Therefore, the stability analysis and evaluation on rock slope is of great significance. The static and dynamic stability analysis on the artificial rock mass slope of WuAn power plant in China is carried on respectively in this paper by using the strength reduction method and FLAC3D software. In this analysis, static and dynamic instability criterions are enumerated, and the static and dynamic safety factors are calculated with the developed criterions of the displacement mutation, respectively. The analysis results show that the artificial rock mass slope is basically stable. It indicates that analyzing slope stability with strength reduction method is feasible.


2011 ◽  
Vol 90-93 ◽  
pp. 3-11
Author(s):  
Yu Cheng Zhang ◽  
Guang Hua Yang ◽  
Hai Ying Hu ◽  
Peng Liu

When strength reduction method is used for side slope analysis, only the intensive parameters are reduced and deformation parameters are not. The ideal elastoplastic model is adopted, and the safety factor is basically in agreement with that of the traditional limit equilibrium method. Main result is the safety factor of side slope, but non-linearity of soil is not considered actually during calculation, so it's hard to arrive at a real deformation field. Based on the deformation modulus elastoplasticity strength reduction method, research of this paper can achieve a more truthful deformation field. Considering the deficiencies in the current slip surface search techniques, this paper mainly studies how to determine the slip surface directly through the slope deformation field and stress field based on the analysis to their characteristics and the formation mechanism and characteristics of slip surface. Three methods to determine the slip surface are worked out: One is to use displacement gradient to identify the most disadvantageous slip surface; The second one is to determine the slip surface using the characteristics of FLAC calculation method and the characteristic that nodal velocity at non-slip area is near to zero and nodal velocity at slip area is very great; The last one is to use the deviation survey method in slope monitoring to track the nodal displacement in numerical analysis, and take the points with displacement catastrophe as those on the slip surface, and link those points to form a curve and finally get the critical slip surface. Analysis is made to the slip surface of clay slope with weak layer. Position of slip surface determined through these three methods is basically the same. Compared with traditional critical equilibrium method, these three methods can not only be applied to homogeneous side slope, but also be used to determine the slip surface of heterogeneous side slope. This paper makes a research on expansion of the application field of deformation modulus elastoplasticity strength reduction method.


1984 ◽  
Vol 21 (4) ◽  
pp. 605-620 ◽  
Author(s):  
C. D. Martin ◽  
P. K. Kaiser

A class of rock slope failures exists in which the mode of failure requires the existence or creation of internal shears to accommodate large internal slide mass distortion. These internal displacements are required to allow motion along the basal slip surface. This paper demonstrates that the more traditional limit equilibrium methods of analysis are often conservative when used to assess the stability of slopes with this failure mechanism. As a result, back analysis may overestimate the available shear resistance. A method of analysis capable of handling this failure mechanism was proposed by S. K. Sarma. A case history from the Revelstoke Hydroelectric Project, British Columbia, is used to demonstrate that these internal shears were required for movement to occur and that passive anchors inside the sliding rock mass can be used to improve the overall slope stability. No attempt is made to evaluate the actual factor of safety of the three-dimensional slide mass. Key words: rock slope, foliation shear, stability analysis, dilation, internal shears, passive anchors.


2018 ◽  
Vol 206 ◽  
pp. 01003
Author(s):  
Qian Shen ◽  
Liu Liu ◽  
Jinxiu Yuan

In order to improve the slope safety of the side slope of anti-dip bedding highway, this paper analyzes the stability of the excavation by using the finite difference numerical simulation technique. The development process of the disaster under the three excavation conditions and the whole process of the slip surface of the anti dip bedding rock slope are revealed; The method of determining the potential slip surface is introduced, that is to say, the slope is unstable and slip by reducing the material parameters of the slope, and then the position of the slip surface is judged by the difference of the displacement value. The research results have important significance for understanding the development mechanism of slope disaster and adopting corresponding engineering measures for different stages of slope.


Sign in / Sign up

Export Citation Format

Share Document