Passive control of laminar separation bubble with spanwise groove on a low-speed highly loaded low-pressure turbine blade

2009 ◽  
Vol 18 (3) ◽  
pp. 193-201 ◽  
Author(s):  
Hualing Luo ◽  
Weiyang Qiao ◽  
Kaifu Xu
Author(s):  
Fabio Bigoni ◽  
Roberto Maffulli ◽  
Tony Arts ◽  
Tom Verstraete

The scope of this work is to perform a single-objective optimization of the high-lift and aft-loaded T2 low pressure turbine blade profile previously designed at the von Karman Institute for Fluid Dynamics (VKI). At correct engine Mach and Reynolds numbers and for a uniform inflow at low turbulence level, a laminar separation bubble occurs in the decelerating part of the suction side. The main goal of the optimization is to obtain a high-lift and aft-loaded blade characterized by lower aerodynamic losses with respect to the original profile. The optimization uses a metamodel-assisted Differential Evolution algorithm, with an Ordinary Kriging metamodel performing the low-fidelity evaluations and Numeca FINE/Turbo for the high-fidelity ones. The numerical results relative to the optimized profile are compared with those obtained for the baseline profile, in order to highlight the improvements on the blade aerodynamic performance coming from the optimization process.


2013 ◽  
Vol 136 (5) ◽  
Author(s):  
Chiara Bernardini ◽  
Stuart I. Benton ◽  
Jen-Ping Chen ◽  
Jeffrey P. Bons

The mechanism of separation control by sound excitation is investigated on the aft-loaded low-pressure turbine (LPT) blade profile, the L1A, which experiences a large boundary layer separation at low Reynolds numbers. Previous work by the authors has shown that on a laminar separation bubble such as that experienced by the front-loaded L2F profile, sound excitation control has its best performance at the most unstable frequency of the shear layer due to the exploitation of the linear instability mechanism. The different loading distribution on the L1A increases the distance of the separated shear layer from the wall and the exploitation of the same linear mechanism is no longer effective in these conditions. However, significant control authority is found in the range of the first subharmonic of the natural unstable frequency. The amplitude of forced excitation required for significant wake loss reduction is higher than that needed when exploiting linear instability, but unlike the latter case, no threshold amplitude is found. The fluid-dynamics mechanisms under these conditions are investigated by particle image velocimetry (PIV) measurements. Phase-locked PIV data gives insight into the growth and development of structures as they are shed from the shear layer and merge to lock into the excited frequency. Unlike near-wall laminar separation sound control, it is found that when such large separated shear layers occur, sound excitation at subharmonics of the fundamental frequency is still effective with high-Tu levels.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Jerrit Dähnert ◽  
Christoph Lyko ◽  
Dieter Peitsch

Based on detailed experimental work conducted at a low speed test facility, this paper describes the transition process in the presence of a separation bubble with low Reynolds number, low free-stream turbulence, and steady main flow conditions. A pressure distribution has been created on a long flat plate by means of a contoured wall opposite of the plate, matching the suction side of a modern low-pressure turbine aerofoil. The main flow conditions for four Reynolds numbers, based on suction surface length and nominal exit velocity, were varied from 80,000 to 300,000, which covers the typical range of flight conditions. Velocity profiles and the overall flow field were acquired in the boundary layer at several streamwise locations using hot-wire anemometry. The data given is in the form of contours for velocity, turbulence intensity, and turbulent intermittency. The results highlight the effects of Reynolds number, the mechanisms of separation, transition, and reattachment, which feature laminar separation-long bubble and laminar separation-short bubble modes. For each Reynolds number, the onset of transition, the transition length, and the general characteristics of separated flow are determined. These findings are compared to the measurement results found in the literature. Furthermore, the experimental data is compared with two categories of correlation functions also given in the literature: (1) correlations predicting the onset of transition and (2) correlations predicting the mode of separated flow transition. Moreover, it is shown that the type of instability involved corresponds to the inviscid Kelvin-Helmholtz instability mode at a dominant frequency that is in agreement with the typical ranges occurring in published studies of separated and free-shear layers.


Author(s):  
Jerrit Da¨hnert ◽  
Christoph Lyko ◽  
Dieter Peitsch

Based on detailed experimental work conducted at a low speed test facility, this paper describes the transition process in the presence of a separation bubble with low Reynolds number, low free-stream turbulence, and steady main flow conditions. A pressure distribution has been created on a long flat plate by means of a contoured wall opposite of the plate, matching the suction side of a modern low-pressure turbine aerofoil. The main flow conditions for four Reynolds numbers, based on suction surface length and nominal exit velocity, were varied from 80,000 to 300,000, which covers the typical range of flight conditions. Velocity profiles and the overall flow field were acquired in the boundary layer at several streamwise locations using hot-wire anemometry. The data given is in the form of contours for velocity, turbulence intensity, and turbulent intermittency. The results highlight the effects of Reynolds number, the mechanisms of separation, transition, and reattachment, which feature laminar separation-long bubble and laminar separation-short bubble modes. For each Reynolds number, the onset of transition, the transition length, and the general characteristics of separated flow are determined. These findings are compared to the measurement results found in the literature. Furthermore, the experimental data is compared with two categories of correlation functions also given in the open literature: (1) correlations predicting the onset of transition and (2) correlations predicting the mode of separated flow transition. Moreover, it is shown that the type of instability involved corresponds to the inviscid Kelvin-Helmholtz instability mode at a dominant frequency that is in agreement with the typical ranges occurring in published studies of separated and free-shear layers.


2004 ◽  
Vol 126 (3) ◽  
pp. 406-413 ◽  
Author(s):  
Re´gis Houtermans ◽  
Thomas Coton ◽  
Tony Arts

The present paper is based on an experimental study of a front-loaded very high lift, low pressure turbine blade designed at the VKI. The experiments have been carried out in a low-speed wind tunnel over a wide operating range of incidence and Reynolds number. The aim of the study is to characterize the flow through the cascade in terms of losses, mean outlet flow angle, and secondary flows. At low inlet freestream turbulence intensity, a laminar separation bubble is present, and a prediction model for a separated flow mode of transition has been developed.


Author(s):  
Fabio Bigoni ◽  
Stefano Vagnoli ◽  
Tony Arts ◽  
Tom Verstraete

The scope of this work is to obtain a deep insight of the occurrence, development and evolution of the laminar separation bubble which occurs on the suction side of the high-lift T106-C low pressure turbine blade operated at correct engine Mach and Reynolds numbers. The commercial codes Numeca FINE/Turbo and FINE/Open were used for the numerical investigation of a set of three different Reynolds numbers. Two different CFD approaches, characterized by a progressively increasing level of complexity and detail in the solution, have been employed, starting from a steady state RANS analysis and ending with a Large Eddy Simulation. Particular attention was paid to the study of the open separation occurring at the lowest Reynolds number, for which a Large Eddy Simulation was performed in order to try to correctly capture the involved phenomena and their characteristic frequencies. In addition, the potentialities of the codes employed for the analysis have been assessed.


Author(s):  
Stephen A. Pym ◽  
Asad Asghar ◽  
William D. E. Allan ◽  
John P. Clark

Abstract Aircraft are operating at increasingly high-altitudes, where decreased air density and engine power settings have led to increasingly low Reynolds numbers in the low-pressure turbine portion of modern-day aeroengines. These operating conditions, in parallel with highly-loaded blade profiles, result in non-reattaching laminar boundary layer separation along the blade suction surface, increasing loss and decreasing engine performance. This work presents an experimental investigation into the potential for integrated leading-edge tubercles to improve blade performance in this operating regime. A turn-table cascade test-section was constructed and commissioned to test a purpose-designed, forward-loaded, low-pressure turbine blade profile at various incidences and Reynolds numbers. Baseline and tubercled blades were tested at axial chord Reynolds numbers at and between 15 000 and 60 000, and angles of incidence ranging from −5° to +10°. Experimental data collection included blade surface pressure measurements, total pressure loss in the blade wakes, hot-wire anemometry, surface hot-film measurements, and surface flow visualization using tufts. Test results showed that the implementation of tubercles did not lead to a performance enhancement. However, useful conclusions were drawn regarding the ability of tubercles to generate stream-wise vortices at ultra-low Reynolds numbers. Additional observations helped to characterize the suction surface boundary layer over the highly-loaded, low-pressure turbine blade profile when at off-design conditions. Recommendations were made for future work.


Sign in / Sign up

Export Citation Format

Share Document