A Low Reynolds Number Experimental Evaluation of Tubercles on a Low-Pressure Turbine Cascade

Author(s):  
Stephen A. Pym ◽  
Asad Asghar ◽  
William D. E. Allan ◽  
John P. Clark

Abstract Aircraft are operating at increasingly high-altitudes, where decreased air density and engine power settings have led to increasingly low Reynolds numbers in the low-pressure turbine portion of modern-day aeroengines. These operating conditions, in parallel with highly-loaded blade profiles, result in non-reattaching laminar boundary layer separation along the blade suction surface, increasing loss and decreasing engine performance. This work presents an experimental investigation into the potential for integrated leading-edge tubercles to improve blade performance in this operating regime. A turn-table cascade test-section was constructed and commissioned to test a purpose-designed, forward-loaded, low-pressure turbine blade profile at various incidences and Reynolds numbers. Baseline and tubercled blades were tested at axial chord Reynolds numbers at and between 15 000 and 60 000, and angles of incidence ranging from −5° to +10°. Experimental data collection included blade surface pressure measurements, total pressure loss in the blade wakes, hot-wire anemometry, surface hot-film measurements, and surface flow visualization using tufts. Test results showed that the implementation of tubercles did not lead to a performance enhancement. However, useful conclusions were drawn regarding the ability of tubercles to generate stream-wise vortices at ultra-low Reynolds numbers. Additional observations helped to characterize the suction surface boundary layer over the highly-loaded, low-pressure turbine blade profile when at off-design conditions. Recommendations were made for future work.

1999 ◽  
Vol 122 (2) ◽  
pp. 431-433 ◽  
Author(s):  
C. G. Murawski ◽  
K. Vafai

An experimental study was conducted in a two-dimensional linear cascade, focusing on the suction surface of a low pressure turbine blade. Flow Reynolds numbers, based on exit velocity and suction length, have been varied from 50,000 to 300,000. The freestream turbulence intensity was varied from 1.1 to 8.1 percent. Separation was observed at all test Reynolds numbers. Increasing the flow Reynolds number, without changing freestream turbulence, resulted in a rearward movement of the onset of separation and shrinkage of the separation zone. Increasing the freestream turbulence intensity, without changing Reynolds number, resulted in shrinkage of the separation region on the suction surface. The influences on the blade’s wake from altering freestream turbulence and Reynolds number are also documented. It is shown that width of the wake and velocity defect rise with a decrease in either turbulence level or chord Reynolds number. [S0098-2202(00)00202-9]


Author(s):  
E. M. Curtis ◽  
H. P. Hodson ◽  
M. R. Banieghbal ◽  
J. D. Denton ◽  
R. J. Howell ◽  
...  

This paper describes a programme of work, largely experimental, which was undertaken with the objective of developing an improved blade profile for the low-pressure turbine in aero-engine applications. Preliminary experiments were conducted using a novel technique. An existing cascade of datum blades was modified to enable the pressure distribution on the suction surface of one of the blades to be altered. Various means, such as shaped inserts, an adjustable flap at the trailing edge, and changing stagger were employed to change the geometry of the passage. These experiments provided boundary layer and lift data for a wide range of suction surface pressure distributions. The data was then used as a guide for the development of new blade profiles. The new blade profiles were then investigated in a low-speed cascade that included a set of moving bars upstream of the cascade of blades 10 simulate the effect of the incoming wakes from the previous blade row in a multistage turbine environment. Results are presented for two improved profiles that are compared with a datum representative of current practice. The experimental results include loss measurements by wake traverse, surface pressure distributions, and boundary layer measurements. The cascades were operated over a Reynolds Number range from 0.7 × 105 to 4.0 × 105. The first profile is a “laminar flow” design that was intended to improve the efficiency at the same loading as the datum. The other is a more highly loaded blade profile intended to permit a reduction in blade numbers. The more highly loaded profile is the most promising candidate for inclusion in future designs. It enables blade numbers to be reduced by 20%, without incurring any efficiency penalty. The results also indicate that unsteady effects must be taken into consideration when selecting a blade profile for the low-pressure turbine.


2010 ◽  
Vol 133 (3) ◽  
Author(s):  
Darius D. Sanders ◽  
Walter F. O’Brien ◽  
Rolf Sondergaard ◽  
Marc D. Polanka ◽  
Douglas C. Rabe

There has been a need for improved prediction methods for low pressure turbine (LPT) blades operating at low Reynolds numbers. This is known to occur when LPT blades are subjugated to high altitude operations causing a decrease in the inlet Reynolds number. Boundary layer separation is more likely to be present within the flowfield of the LPT stages due to increase in the region adverse pressure gradients on the blade suction surface. Accurate CFD predictions are needed in order to improve design methods and performance prediction of LPT stages operating at low Reynolds numbers. CFD models were created for the flow over two low pressure turbine blade designs using a new turbulent transitional flow model, originally developed by Walters and Leylek (2004, “A New Model for Boundary Layer Transition Using a Single Point RANS Approach,” ASME J. Turbomach., 126(1), pp. 193–202). Part I of this study applied Walters and Leylek’s model to a cascade CFD model of a LPT blade airfoil with a light loading level. Flows were simulated over a Reynolds number range of 15,000–100,000 and predicted the laminar-to-turbulent transitional flow behavior adequately. It showed significant improvement in performance prediction compared to conventional RANS turbulence models. Part II of this paper presents the application of the prediction methodology developed in Part I to both two-dimensional and three-dimensional cascade models of a largely separated LPT blade geometry with a high blade loading level. Comparisons were made with available experimental cascade results on the prediction of the inlet Reynolds number effect on surface static pressure distribution, suction surface boundary layer behavior, and the wake total pressure loss coefficient. The kT-kL-ω transitional flow model accuracy was judged sufficient for an understanding of the flow behavior within the flow passage, and can identify when and where a separation event occurs. This model will provide the performance prediction needed for modeling of low Reynolds number effects on more complex geometries.


1997 ◽  
Vol 119 (3) ◽  
pp. 531-538 ◽  
Author(s):  
E. M. Curtis ◽  
H. P. Hodson ◽  
M. R. Banieghbal ◽  
J. D. Denton ◽  
R. J. Howell ◽  
...  

This paper describes a program of work, largely experimental, which was undertaken with the objective of developing an improved blade profile for the low-pressure turbine in aero-engine applications. Preliminary experiments were conducted using a novel technique. An existing cascade of datum blades was modified to enable the pressure distribution on the suction surface of one of the blades to be altered. Various means, such as shaped inserts, an adjustable flap at the trailing edge, and changing stagger were employed to change the geometry of the passage. These experiments provided boundary layer and lift data for a wide range of suction surface pressure distributions. The data were then used as a guide for the development of new blade profiles. The new blade profiles were then investigated in a low-speed cascade that included a set of moving bars upstream of the cascade of blades to simulate the effect of the incoming wakes from the previous blade row in a multistage turbine environment. Results are presented for two improved profiles that are compared with a datum representative of current practice. The experimental results include loss measurements by wake traverse, surface pressure distributions, and boundary layer measurements. The cascades were operated over a Reynolds number range from 0.7 × 105 to 4.0 × 105. The first profile is a “laminar flow” design that was intended to improve the efficiency at the same loading as the datum. The other is a more highly loaded blade profile intended to permit a reduction in blade numbers. The more highly loaded profile is the most promising candidate for inclusion in future designs. It enables blade numbers to be reduced by 20 percent, without incurring any efficiency penalty. The results also indicate that unsteady effects must be taken into consideration when selecting a blade profile for the low-pressure turbine.


Author(s):  
Marion Mack ◽  
Roland Brachmanski ◽  
Reinhard Niehuis

The performance of the low pressure turbine (LPT) can vary appreciably, because this component operates under a wide range of Reynolds numbers. At higher Reynolds numbers, mid and aft loaded profiles have the advantage that transition of suction side boundary layer happens further downstream than at front loaded profiles, resulting in lower profile loss. At lower Reynolds numbers, aft loading of the blade can mean that if a suction side separation exists, it may remain open up to the trailing edge. This is especially the case when blade lift is increased via increased pitch to chord ratio. There is a trend in research towards exploring the effect of coupling boundary layer control with highly loaded turbine blades, in order to maximize performance over the full relevant Reynolds number range. In an earlier work, pulsed blowing with fluidic oscillators was shown to be effective in reducing the extent of the separated flow region and to significantly decrease the profile losses caused by separation over a wide range of Reynolds numbers. These experiments were carried out in the High-Speed Cascade Wind Tunnel of the German Federal Armed Forces University Munich, Germany, which allows to capture the effects of pulsed blowing at engine relevant conditions. The assumed control mechanism was the triggering of boundary layer transition by excitation of the Tollmien-Schlichting waves. The current work aims to gain further insight into the effects of pulsed blowing. It investigates the effect of a highly efficient configuration of pulsed blowing at a frequency of 9.5 kHz on the boundary layer at a Reynolds number of 70000 and exit Mach number of 0.6. The boundary layer profiles were measured at five positions between peak Mach number and the trailing edge with hot wire anemometry and pneumatic probes. Experiments were conducted with and without actuation under steady as well as periodically unsteady inflow conditions. The results show the development of the boundary layer and its interaction with incoming wakes. It is shown that pulsed blowing accelerates transition over the separation bubble and drastically reduces the boundary layer thickness.


Author(s):  
Kenneth Van Treuren ◽  
Tyler Pharris ◽  
Olivia Hirst

The low-pressure turbine has become more important in the last few decades because of the increased emphasis on higher overall pressure and bypass ratios. The desire is to increase blade loading to reduce blade counts and stages in the low-pressure turbine of a gas turbine engine. Increased turbine inlet temperatures for newer cycles results in higher temperatures in the low-pressure turbine, especially the latter stages, where cooling technologies are not used. These higher temperatures lead to higher work from the turbine and this, combined with the high loadings, can lead to flow separation. Separation is more likely in engines operating at high altitudes and reduced throttle setting. At the high Reynolds numbers found at takeoff, the flow over a low-pressure turbine blade tends to stay attached. At lower blade Reynolds numbers (25,000 to 200,000), found during cruise at high altitudes, the flow on the suction surface of the low-pressure turbine blades is inclined to separate. This paper is a study on the flow characteristics of the L1A turbine blade at three low Reynolds numbers (60,000, 108,000, and 165,000) and 15 turbulence intensities (1.89% to 19.87%) in a steady flow cascade wind tunnel. With this data, it is possible to examine the impact of Reynolds number and turbulence intensity on the location of the initiation of flow separation, the flow separation zone, and the reattachment location. Quantifying the change in separated flow as a result of varying Reynolds numbers and turbulence intensities will help to characterize the low momentum flow environments in which the low-pressure turbine must operate and how this might impact the operation of the engine. Based on the data presented, it is possible to predict the location and size of the separation as a function of both the Reynolds number and upstream freestream turbulence intensity (FSTI). Being able to predict this flow behavior can lead to more effective blade designs using either passive or active flow control to reduce or eliminate flow separation.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Jiahuan Cui ◽  
V. Nagabhushana Rao ◽  
Paul Tucker

Using a range of high-fidelity large eddy simulations (LES), the contrasting flow physics on the suction surface, pressure surface, and endwalls of a low-pressure turbine (LPT) blade (T106A) was studied. The current paper attempts to provide an improved understanding of the flow physics over these three zones under the influence of different inflow boundary conditions. These include: (a) the effect of wakes at low and high turbulence intensity on the flow at midspan and (b) the impact of the state of the incoming boundary layer on endwall flow features. On the suction surface, the pressure fluctuations on the aft portion significantly reduced at high freestream turbulence (FST). The instantaneous flow features revealed that this reduction at high FST (HF) is due to the dominance of “streak-based” transition over the “Kelvin–Helmholtz” (KH) based transition. Also, the transition mechanisms observed over the turbine blade were largely similar to those on a flat plate subjected to pressure gradients. On pressure surface, elongated vortices were observed at low FST (LF). The possibility of the coexistence of both the Görtler instability and the severe straining of the wakes in the formation of these elongated vortices was suggested. While this was true for the cases under low turbulence levels, the elongated vortices vanished at higher levels of background turbulence. At endwalls, the effect of the state of the incoming boundary layer on flow features has been demonstrated. The loss cores corresponding to the passage vortex and trailing shed vortex were moved farther from the endwall with a turbulent boundary layer (TBL) when compared to an incoming laminar boundary layer (LBL). Multiple horse-shoe vortices, which constantly moved toward the leading edge due to a low-frequency unstable mechanism, were captured.


Sign in / Sign up

Export Citation Format

Share Document