Exploitation of Subharmonics for Separated Shear Layer Control on a High-Lift Low-Pressure Turbine Using Acoustic Forcing

2013 ◽  
Vol 136 (5) ◽  
Author(s):  
Chiara Bernardini ◽  
Stuart I. Benton ◽  
Jen-Ping Chen ◽  
Jeffrey P. Bons

The mechanism of separation control by sound excitation is investigated on the aft-loaded low-pressure turbine (LPT) blade profile, the L1A, which experiences a large boundary layer separation at low Reynolds numbers. Previous work by the authors has shown that on a laminar separation bubble such as that experienced by the front-loaded L2F profile, sound excitation control has its best performance at the most unstable frequency of the shear layer due to the exploitation of the linear instability mechanism. The different loading distribution on the L1A increases the distance of the separated shear layer from the wall and the exploitation of the same linear mechanism is no longer effective in these conditions. However, significant control authority is found in the range of the first subharmonic of the natural unstable frequency. The amplitude of forced excitation required for significant wake loss reduction is higher than that needed when exploiting linear instability, but unlike the latter case, no threshold amplitude is found. The fluid-dynamics mechanisms under these conditions are investigated by particle image velocimetry (PIV) measurements. Phase-locked PIV data gives insight into the growth and development of structures as they are shed from the shear layer and merge to lock into the excited frequency. Unlike near-wall laminar separation sound control, it is found that when such large separated shear layers occur, sound excitation at subharmonics of the fundamental frequency is still effective with high-Tu levels.

Author(s):  
Chiara Bernardini ◽  
Stuart Benton ◽  
Jen-Ping Chen ◽  
Jeffrey P. Bons

The mechanism of separation control by sound excitation is investigated on the aft loaded LPT blade profile, the L1A, which experiences a large boundary layer separation at low Reynolds numbers. Previous work by the authors has shown that on a laminar separation bubble such as that experienced by the front-loaded L2F profile, sound excitation control has its best performance at the most unstable frequency of the shear layer due to the exploitation of the linear instability mechanism. The different loading distribution on the L1A increases the distance of the separated shear layer from the wall and the exploitation of the same linear mechanism is no longer effective in these conditions. However, significant control authority is found in the range of the first subharmonic of the natural unstable frequency. The amplitude of forced excitation required for significant wake loss reduction is higher than that needed when exploiting linear instability, but unlike the latter case, no threshold amplitude is found. The fluid-dynamics mechanisms under these conditions are investigated by PIV measurements. Phase-locked PIV data gives insight into the growth and development of structures as they are shed from the shear layer and merge to lock into the excited frequency. Unlike near-wall laminar separation sound control, it is found that when such large separated shear layers occur, sound excitation at subharmonics of the fundamental frequency is still effective with high Tu levels.


Author(s):  
Ralph J. Volino ◽  
Olga Kartuzova ◽  
Mounir B. Ibrahim

Boundary layer separation, transition and reattachment have been studied on a very high lift, low-pressure turbine airfoil. Experiments were done under high (4%) freestream turbulence conditions on a linear cascade in a low speed wind tunnel. Pressure surveys on the airfoil surface and downstream total pressure loss surveys were documented. Velocity profiles were acquired in the suction side boundary layer at several streamwise locations using hot-wire anemometry. Cases were considered at Reynolds numbers (based on the suction surface length and the nominal exit velocity from the cascade) ranging from 25,000 to 300,000. At the lowest Reynolds number the boundary layer separated and did not reattach, in spite of transition in the separated shear layer. At higher Reynolds numbers the boundary layer did reattach, and the separation bubble became smaller as Re increased. High freestream turbulence increased the thickness of the separated shear layer, resulting in a thinner separation bubble. This effect resulted in reattachment at intermediate Reynolds numbers, which was not observed at the same Re under low freestream turbulence conditions. Numerical simulations were performed using an unsteady Reynolds averaged Navier-Stokes (URANS) code with both a shear stress transport k-ω model and a 4 equation shear stress transport Transition model. Both models correctly predicted separation and reattachment (if it occurred) at all Reynolds numbers. The Transition model generally provided better quantitative results, correctly predicting velocities, pressure, and separation and transition locations. The model also correctly predicted the difference between high and low freestream turbulence cases.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Jerrit Dähnert ◽  
Christoph Lyko ◽  
Dieter Peitsch

Based on detailed experimental work conducted at a low speed test facility, this paper describes the transition process in the presence of a separation bubble with low Reynolds number, low free-stream turbulence, and steady main flow conditions. A pressure distribution has been created on a long flat plate by means of a contoured wall opposite of the plate, matching the suction side of a modern low-pressure turbine aerofoil. The main flow conditions for four Reynolds numbers, based on suction surface length and nominal exit velocity, were varied from 80,000 to 300,000, which covers the typical range of flight conditions. Velocity profiles and the overall flow field were acquired in the boundary layer at several streamwise locations using hot-wire anemometry. The data given is in the form of contours for velocity, turbulence intensity, and turbulent intermittency. The results highlight the effects of Reynolds number, the mechanisms of separation, transition, and reattachment, which feature laminar separation-long bubble and laminar separation-short bubble modes. For each Reynolds number, the onset of transition, the transition length, and the general characteristics of separated flow are determined. These findings are compared to the measurement results found in the literature. Furthermore, the experimental data is compared with two categories of correlation functions also given in the literature: (1) correlations predicting the onset of transition and (2) correlations predicting the mode of separated flow transition. Moreover, it is shown that the type of instability involved corresponds to the inviscid Kelvin-Helmholtz instability mode at a dominant frequency that is in agreement with the typical ranges occurring in published studies of separated and free-shear layers.


Author(s):  
Jerrit Da¨hnert ◽  
Christoph Lyko ◽  
Dieter Peitsch

Based on detailed experimental work conducted at a low speed test facility, this paper describes the transition process in the presence of a separation bubble with low Reynolds number, low free-stream turbulence, and steady main flow conditions. A pressure distribution has been created on a long flat plate by means of a contoured wall opposite of the plate, matching the suction side of a modern low-pressure turbine aerofoil. The main flow conditions for four Reynolds numbers, based on suction surface length and nominal exit velocity, were varied from 80,000 to 300,000, which covers the typical range of flight conditions. Velocity profiles and the overall flow field were acquired in the boundary layer at several streamwise locations using hot-wire anemometry. The data given is in the form of contours for velocity, turbulence intensity, and turbulent intermittency. The results highlight the effects of Reynolds number, the mechanisms of separation, transition, and reattachment, which feature laminar separation-long bubble and laminar separation-short bubble modes. For each Reynolds number, the onset of transition, the transition length, and the general characteristics of separated flow are determined. These findings are compared to the measurement results found in the literature. Furthermore, the experimental data is compared with two categories of correlation functions also given in the open literature: (1) correlations predicting the onset of transition and (2) correlations predicting the mode of separated flow transition. Moreover, it is shown that the type of instability involved corresponds to the inviscid Kelvin-Helmholtz instability mode at a dominant frequency that is in agreement with the typical ranges occurring in published studies of separated and free-shear layers.


Author(s):  
Ralph J. Volino

Boundary layer separation, transition and reattachment have been studied on a new, very high lift, low-pressure turbine airfoil. Experiments were done under low freestream turbulence conditions on a linear cascade in a low speed wind tunnel. Pressure surveys on the airfoil surface and downstream total pressure loss surveys were documented. Velocity profiles were acquired in the suction side boundary layer at several streamwise locations using hot-wire anemometry. Cases were considered at Reynolds numbers (based on the suction surface length and the nominal exit velocity from the cascade) ranging from 25,000 to 330,000. In all cases the boundary layer separated, but at high Reynolds number the separation bubble remained very thin and quickly reattached after transition to turbulence. In the low Reynolds number cases, the boundary layer separated and did not reattach, even when transition occurred. This behavior contrasts with previous research on other airfoils, in which transition, if it occurred, always induced reattachment, regardless of Reynolds number.


2021 ◽  
pp. 1-40
Author(s):  
Heechan Jeong ◽  
Seung Jin Song

Abstract An experimental study has been conducted to investigate the effects of surface roughness on the profile loss of a flat-plate with a contoured wall. All of the measurements have been conducted for the suction side pressure gradient of a high-lift low pressure turbine airfoil at the fixed Reynolds number (Rec) and freestream turbulence intensity (Tu) of 1.2 · 105 and 3.2%, respectively, representing a cruise condition. The time-resolved streamwise and wall-normal velocity fields for three different surface roughness values of Ra/C · 105 = 0.065, 4.417 and 7.428 have been measured with a 2D hot-wire probe. For the smooth surface, a laminar separation bubble forms from about 60% of the chord; and laminar-to-turbulent transition occurs during reattachment. Since the portion of turbulent flow over the flat-plate is relatively small, the overall profile loss is mainly determined by the momentum deficit generated during transition. Increased roughness decreases the maximum height and length of the separation bubble but does not affect the separation bubble onset location. The beneficial effects of increased surface roughness on the profile loss appear in the separated shear layer and reattachment. Increased surface roughness increases turbulent mixing in the separated shear layer. Thus, the shear layer thickness and momentum deficit are reduced. In addition, increased surface roughness reduces the length scale and turbulence intensity of the shed vortices. Consequently, turbulent mixing and momentum deficit during reattachment of boundary layers are decreased, resulting in a lower profile loss.


Author(s):  
Marco Montis ◽  
Reinhard Niehuis ◽  
Andreas Fiala

The effect of surface roughness on the aerodynamics of a highly loaded low-pressure turbine airfoil was investigated in a series of cascade tests conducted in a high speed facility. Profile loss and aerodynamic loading of three different surface roughnesses with a ratio of the centerline average roughness to the profile chord of 1.1 · 10−5, 7.1 · 10−5 and 29 · 10−5 were analysed. Tests were carried out under design outlet Mach number, outlet Reynolds number ranging from 5 · 104 to 7 · 105 and inlet turbulence level of 2.5% and 5%. The mid span flow field downstream of the cascade and the loading distribution on the profile were measured for each investigated operating point using a five hole probe and surface static pressure taps. Additional measurements with a hot wire probe in the profile boundary layer under reference conditions (Re2th = 2 · 105) were also conducted. Experimental results show a loss reduction for the highest roughness under reference conditions, due to the partial suppression of the separation bubble on the suction side of the profile. At high Reynolds numbers a massive boundary layer separation on the suction side is observed for the highest roughness, along with a large increase in total pressure loss. The middle roughness tested has no effect on the loading distribution as well as on the loss behaviour of the airfoil under all investigated flow conditions.


2011 ◽  
Vol 134 (3) ◽  
Author(s):  
Jeffrey P. Bons ◽  
Jon Pluim ◽  
Kyle Gompertz ◽  
Matthew Bloxham ◽  
John P. Clark

The synchronous application of flow control in the presence of unsteady wakes was studied on a highly loaded low pressure turbine blade. At low Reynolds numbers, the blade exhibits a nonreattaching separation bubble under steady flow conditions without upstream wakes. Unsteady wakes from an upstream vane row are simulated with a moving row of bars. The separation zone is modified substantially by the presence of unsteady wakes, producing a smaller separation zone and reducing the area-averaged wake total pressure loss by more than 50%. The wake disturbance accelerates transition in the separated shear layer but stops short of reattaching the flow. Rather, a new time-averaged equilibrium location is established for the separated shear layer. The focus of this study was the application of pulsed flow control using two spanwise rows of discrete vortex generator jets. The jets were located at 59% Cx, approximately the peak cp location, and at 72% Cx. The most effective separation control was achieved at the upstream location. The wake total pressure loss decreased 60% from the wake-only level and the cp distribution fully recovered its high Reynolds number shape. The jet disturbance dominates the dynamics of the separated shear layer, with the wake disturbance assuming a secondary role only. When the pulsed jet actuation was initiated at the downstream location, synchronizing the jet to actuate between wake events was key to producing the most effective separation control. Evidence suggests that flow control using vortex generator jets (VGJs) will be effective in the highly unsteady low pressure turbine environment of an operating gas turbine, provided the VGJ location and amplitude are adapted for the specific blade profile.


Author(s):  
Samson AnnapuReddy ◽  
S. Sarkar

Aerodynamic interactions of a separated shear layer from the semi-circular leading edge of a constant thickness aerofoil model with jets ejecting in the vicinity of reattachment from a row of discrete holes at an angle of 30° in the streamwise direction are elucidated. Experiments are carried out for two Reynolds numbers (ReD) 25000 and 55000 (based on the leading-edge diameter) and two velocity ratios (V.R) 0.5 and 1. The time-averaged velocity and turbulence quantities are measured using Laser-Doppler Anemometry (LDA) at different streamwise locations along the centre line of the jet, while the instantaneous flow filed is obtained using Particle Image Velocimetry (PIV). Measurements reveal that the flow undergoes separation at the blending point of semi-circle and flat plate owing to sudden change in geometry. It is observed that in the absence of the jet, the separated shear layer undergoes transition with formation Kelvin-Helmholtz (K-H) rolls and a significant growth of Reynolds stress in the second-half of the bubble is evident. With injection, the separation bubble length in the upstream of jet has decreased with increased growth rate of velocity fluctuations. However, the characteristics of the flow in the separated region remains almost unchanged and the transition criteria even follows the universal intermittency characteristics of Dhawan and Narasimha [35]. The instantaneous results elucidate that K-H rolls from the separated shear layer interact with the injected jet resulting in its oscillation. In the downstream of injection, the presence of the jet is felt with enhanced turbulence activities in the outer layer, particularly for high V.R. Further, the onset and end of transition of the separated flow are compared with correlations available in the literature.


2009 ◽  
Vol 629 ◽  
pp. 263-298 ◽  
Author(s):  
SOURABH S. DIWAN ◽  
O. N. RAMESH

This is an experimental and theoretical study of a laminar separation bubble and the associated linear stability mechanisms. Experiments were performed over a flat plate kept in a wind tunnel, with an imposed pressure gradient typical of an aerofoil that would involve a laminar separation bubble. The separation bubble was characterized by measurement of surface-pressure distribution and streamwise velocity using hot-wire anemometry. Single component hot-wire anemometry was also used for a detailed study of the transition dynamics. It was found that the so-called dead-air region in the front portion of the bubble corresponded to a region of small disturbance amplitudes, with the amplitude reaching a maximum value close to the reattachment point. An exponential growth rate of the disturbance was seen in the region upstream of the mean maximum height of the bubble, and this was indicative of a linear instability mechanism at work. An infinitesimal disturbance was impulsively introduced into the boundary layer upstream of separation location, and the wave packet was tracked (in an ensemble-averaged sense) while it was getting advected downstream. The disturbance was found to be convective in nature. Linear stability analyses (both the Orr–Sommerfeld and Rayleigh calculations) were performed for mean velocity profiles, starting from an attached adverse-pressure-gradient boundary layer all the way up to the front portion of the separation-bubble region (i.e. up to the end of the dead-air region in which linear evolution of the disturbance could be expected). The conclusion from the present work is that the primary instability mechanism in a separation bubble is inflectional in nature, and its origin can be traced back to upstream of the separation location. In other words, the inviscid inflectional instability of the separated shear layer should be logically seen as an extension of the instability of the upstream attached adverse-pressure-gradient boundary layer. This modifies the traditional view that pegs the origin of the instability in a separation bubble to the detached shear layer outside the bubble, with its associated Kelvin–Helmholtz mechanism. We contend that only when the separated shear layer has moved considerably away from the wall (and this happens near the maximum-height location of the mean bubble), a description by the Kelvin–Helmholtz instability paradigm, with its associated scaling principles, could become relevant. We also propose a new scaling for the most amplified frequency for a wall-bounded shear layer in terms of the inflection-point height and the vorticity thickness and show it to be universal.


Sign in / Sign up

Export Citation Format

Share Document